Distributed stochastic proximal algorithm with random reshuffling for
non-smooth finite-sum optimization
- URL: http://arxiv.org/abs/2111.03820v1
- Date: Sat, 6 Nov 2021 07:29:55 GMT
- Title: Distributed stochastic proximal algorithm with random reshuffling for
non-smooth finite-sum optimization
- Authors: Xia Jiang, Xianlin Zeng, Jian Sun, Jie Chen and Lihua Xie
- Abstract summary: Non-smooth finite-sum minimization is a fundamental problem in machine learning.
This paper develops a distributed proximal-gradient algorithm with random reshuffling to solve the problem.
- Score: 28.862321453597918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-smooth finite-sum minimization is a fundamental problem in machine
learning. This paper develops a distributed stochastic proximal-gradient
algorithm with random reshuffling to solve the finite-sum minimization over
time-varying multi-agent networks. The objective function is a sum of
differentiable convex functions and non-smooth regularization. Each agent in
the network updates local variables with a constant step-size by local
information and cooperates to seek an optimal solution. We prove that local
variable estimates generated by the proposed algorithm achieve consensus and
are attracted to a neighborhood of the optimal solution in expectation with an
$\mathcal{O}(\frac{1}{T}+\frac{1}{\sqrt{T}})$ convergence rate. In addition,
this paper shows that the steady-state error of the objective function can be
arbitrarily small by choosing small enough step-sizes. Finally, some
comparative simulations are provided to verify the convergence performance of
the proposed algorithm.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
A key component in the algorithm is the randomness based on the value of the objective function.
We prove the convergence of the algorithm with an algebra and tuning in the parameter space.
We present several numerical examples to demonstrate the efficiency and robustness of the algorithm.
arXiv Detail & Related papers (2022-04-12T16:27:49Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
We propose a novel zeroth-order optimization algorithm for distributed reinforcement learning.
It allows each agent to estimate its local gradient by cost evaluation independently, without use of any consensus protocol.
arXiv Detail & Related papers (2021-07-26T18:11:07Z) - A Granular Sieving Algorithm for Deterministic Global Optimization [6.01919376499018]
A gradient-free deterministic method is developed to solve global optimization problems for Lipschitz continuous functions.
The method can be regarded as granular sieving with synchronous analysis in both the domain and range of the objective function.
arXiv Detail & Related papers (2021-07-14T10:03:03Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order
Coordinate Method [3.860616339202303]
This paper investigates the distributed non optimization problem of minimizing a global cost function formed by the summation of $ZOn$ local cost functions.
Agents approximate their own ZO coordinate method to solve the problem.
arXiv Detail & Related papers (2021-03-24T03:07:46Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - Distributed Stochastic Consensus Optimization with Momentum for
Nonconvex Nonsmooth Problems [45.88640334610308]
This paper presents a new distributed optimization algorithm for non-smooth problems.
We show that the proposed algorithm can achieve an overcal communication.
Experiments are presented to illustrate the effectiveness of the proposed algorithms.
arXiv Detail & Related papers (2020-11-10T13:12:21Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.