A Visual Analytics Framework for Explaining and Diagnosing Transfer
Learning Processes
- URL: http://arxiv.org/abs/2009.06876v1
- Date: Tue, 15 Sep 2020 05:59:00 GMT
- Title: A Visual Analytics Framework for Explaining and Diagnosing Transfer
Learning Processes
- Authors: Yuxin Ma, Arlen Fan, Jingrui He, Arun Reddy Nelakurthi, Ross
Maciejewski
- Abstract summary: We present a visual analytics framework for the multi-level exploration of the transfer learning processes when training deep neural networks.
Our framework establishes a multi-aspect design to explain how the learned knowledge from the existing model is transferred into the new learning task when training deep neural networks.
- Score: 42.57604833160855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many statistical learning models hold an assumption that the training data
and the future unlabeled data are drawn from the same distribution. However,
this assumption is difficult to fulfill in real-world scenarios and creates
barriers in reusing existing labels from similar application domains. Transfer
Learning is intended to relax this assumption by modeling relationships between
domains, and is often applied in deep learning applications to reduce the
demand for labeled data and training time. Despite recent advances in exploring
deep learning models with visual analytics tools, little work has explored the
issue of explaining and diagnosing the knowledge transfer process between deep
learning models. In this paper, we present a visual analytics framework for the
multi-level exploration of the transfer learning processes when training deep
neural networks. Our framework establishes a multi-aspect design to explain how
the learned knowledge from the existing model is transferred into the new
learning task when training deep neural networks. Based on a comprehensive
requirement and task analysis, we employ descriptive visualization with
performance measures and detailed inspections of model behaviors from the
statistical, instance, feature, and model structure levels. We demonstrate our
framework through two case studies on image classification by fine-tuning
AlexNets to illustrate how analysts can utilize our framework.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Understanding Activation Patterns in Artificial Neural Networks by
Exploring Stochastic Processes [0.0]
We propose utilizing the framework of processes, which has been underutilized thus far.
We focus solely on activation frequency, leveraging neuroscience techniques used for real neuron spike trains.
We derive parameters describing activation patterns in each network, revealing consistent differences across architectures and training sets.
arXiv Detail & Related papers (2023-08-01T22:12:30Z) - A Meta-Learning Approach to Population-Based Modelling of Structures [0.0]
A major problem of machine-learning approaches in structural dynamics is the frequent lack of structural data.
Inspired by the recently-emerging field of population-based structural health monitoring, this work attempts to create models that are able to transfer knowledge within populations of structures.
The models trained using meta-learning approaches, are able to outperform conventional machine learning methods regarding inference about structures of the population.
arXiv Detail & Related papers (2023-02-15T23:01:59Z) - Explaining Deep Models through Forgettable Learning Dynamics [12.653673008542155]
We visualize the learning behaviour during training by tracking how often samples are learned and forgotten in subsequent training epochs.
Inspired by this phenomenon, we present a novel segmentation method that actively uses this information to alter the data representation within the model.
arXiv Detail & Related papers (2023-01-10T21:59:20Z) - Internal Representations of Vision Models Through the Lens of Frames on
Data Manifolds [8.67467876089153]
We present a new approach to studying such representations inspired by the idea of a frame on the tangent bundle of a manifold.
Our construction, which we call a neural frame, is formed by assembling a set of vectors representing specific types of perturbations of a data point.
Using neural frames, we make observations about the way that models process, layer-by-layer, specific modes of variation within a small neighborhood of a datapoint.
arXiv Detail & Related papers (2022-11-19T01:48:19Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Extracting Global Dynamics of Loss Landscape in Deep Learning Models [0.0]
We present a toolkit for the Dynamical Organization Of Deep Learning Loss Landscapes, or DOODL3.
DOODL3 formulates the training of neural networks as a dynamical system, analyzes the learning process, and presents an interpretable global view of trajectories in the loss landscape.
arXiv Detail & Related papers (2021-06-14T18:07:05Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.