論文の概要: Data Poisoning Attacks on Regression Learning and Corresponding Defenses
- arxiv url: http://arxiv.org/abs/2009.07008v1
- Date: Tue, 15 Sep 2020 12:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 05:41:56.155732
- Title: Data Poisoning Attacks on Regression Learning and Corresponding Defenses
- Title(参考訳): 回帰学習と対応防衛に関するデータ中毒攻撃
- Authors: Nicolas Michael M\"uller, Daniel Kowatsch, Konstantin B\"ottinger
- Abstract要約: 逆データ中毒は機械学習に対する効果的な攻撃であり、トレーニングデータセットに有毒データを導入することでモデルの完全性を脅かす。
データ中毒攻撃が生産システムに脅威を与え、新たなブラックボックス攻撃をもたらす現実的なシナリオを提示する。
その結果, 残留剤の平均二乗誤差(MSE)は, わずか2%の毒素を挿入することにより150パーセントに増加することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial data poisoning is an effective attack against machine learning
and threatens model integrity by introducing poisoned data into the training
dataset. So far, it has been studied mostly for classification, even though
regression learning is used in many mission critical systems (such as dosage of
medication, control of cyber-physical systems and managing power supply).
Therefore, in the present research, we aim to evaluate all aspects of data
poisoning attacks on regression learning, exceeding previous work both in terms
of breadth and depth. We present realistic scenarios in which data poisoning
attacks threaten production systems and introduce a novel black-box attack,
which is then applied to a real-word medical use-case. As a result, we observe
that the mean squared error (MSE) of the regressor increases to 150 percent due
to inserting only two percent of poison samples. Finally, we present a new
defense strategy against the novel and previous attacks and evaluate it
thoroughly on 26 datasets. As a result of the conducted experiments, we
conclude that the proposed defence strategy effectively mitigates the
considered attacks.
- Abstract(参考訳): 逆データ中毒は機械学習に対する効果的な攻撃であり、トレーニングデータセットに有毒データを導入することでモデルの完全性を脅かす。
これまでのところ、回帰学習は多くのミッションクリティカルシステム(医薬品の服用、サイバー物理システムの制御、電源管理など)で使われているが、分類のために研究されている。
そこで本研究では, 回帰学習におけるデータ中毒攻撃のすべての側面を, 幅と深さの両面から評価することを目的としている。
データ中毒攻撃が生産システムを脅かす現実的なシナリオを示し、新たなブラックボックス攻撃を導入し、それを実単語の医療ユースケースに適用する。
その結果, 残留剤の平均二乗誤差(MSE)は, わずか2%の毒素を挿入することにより150パーセントに増加することがわかった。
最後に,新規および先行攻撃に対する新たな防御戦略を提示し,26のデータセットについて徹底的に評価する。
実験の結果,提案した防衛戦略は検討された攻撃を効果的に軽減することがわかった。
関連論文リスト
- On the Adversarial Risk of Test Time Adaptation: An Investigation into Realistic Test-Time Data Poisoning [49.17494657762375]
テスト時間適応(TTA)は、テストデータを使用して推論段階でモデルの重みを更新し、一般化を強化する。
既存の研究では、TTAが逆方向検体で更新されると、良性検体の性能が低下することが示されている。
そこで本研究では, 良性試料にアクセスすることなく, 有毒試料を効果的かつ現実的に生成する手法を提案する。
論文 参考訳(メタデータ) (2024-10-07T01:29:19Z) - Have You Poisoned My Data? Defending Neural Networks against Data Poisoning [0.393259574660092]
本稿では,トランスファー学習環境における有毒なデータポイントの検出とフィルタリングを行う新しい手法を提案する。
有効毒は, 特徴ベクトル空間の清浄点とよく区別できることを示す。
提案手法は, 防衛率と最終訓練モデルの性能において, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-20T11:50:16Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Autoregressive Perturbations for Data Poisoning [54.205200221427994]
ソーシャルメディアからのデータスクレイピングは、不正なデータの使用に関する懸念が高まっている。
データ中毒攻撃は、スクラップ対策として提案されている。
より広範なデータセットにアクセスせずに有毒なデータを生成できる自動回帰(AR)中毒を導入する。
論文 参考訳(メタデータ) (2022-06-08T06:24:51Z) - Wild Patterns Reloaded: A Survey of Machine Learning Security against
Training Data Poisoning [32.976199681542845]
我々は、機械学習における中毒攻撃と防御の包括的体系化を提供する。
私たちはまず、現在の脅威モデルと攻撃を分類し、それに従って既存の防衛を組織化します。
我々は、我々の体系化は、他のデータモダリティに対する最先端の攻撃や防御も含んでいると論じている。
論文 参考訳(メタデータ) (2022-05-04T11:00:26Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
我々は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを示します。
我々の研究は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを検証する。
論文 参考訳(メタデータ) (2021-06-18T08:29:53Z) - Defening against Adversarial Denial-of-Service Attacks [0.0]
データ中毒は、機械学習とデータ駆動技術に対する最も関連するセキュリティ脅威の1つです。
我々は,dos有毒なインスタンスを検出する新しい手法を提案する。
2つのdos毒殺攻撃と7つのデータセットに対する我々の防御を評価し、毒殺事例を確実に特定できることを確認します。
論文 参考訳(メタデータ) (2021-04-14T09:52:36Z) - Property Inference From Poisoning [15.105224455937025]
プロパティ推論攻撃は、トレーニングされたモデルにアクセスでき、トレーニングデータのグローバルな統計を抽出しようとする敵を考える。
本研究では,モデルの情報漏洩を増大させることが目的とする中毒攻撃について検討する。
以上より,毒殺攻撃は情報漏洩を著しく促進し,敏感なアプリケーションにおいてより強力な脅威モデルと見なされるべきであることが示唆された。
論文 参考訳(メタデータ) (2021-01-26T20:35:28Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。