論文の概要: Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network
- arxiv url: http://arxiv.org/abs/2009.07092v5
- Date: Tue, 12 Jul 2022 08:45:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 06:43:03.784463
- Title: Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network
- Title(参考訳): 小児mr画像におけるシェーププリファレンスと逆ネットワークの併用による多構造骨分節化
- Authors: Arnaud Boutillon, Bhushan Borotikar, Val\'erie Burdin and Pierre-Henri
Conze
- Abstract要約: 異種小児磁気共鳴(MR)画像のセグメント化に難渋する課題に対して,新たにトレーニングした正規化畳み込みエンコーダデコーダネットワークを提案する。
グローバルに一貫した予測を得るために,オートエンコーダで学習した非線形形状表現から得られる,形状先行に基づく正規化を組み込む。
提案手法は,Dice, 感度, 特異性, 最大対称表面距離, 平均対称表面距離, および相対絶対体積差の測定値について, 従来提案した手法と同等あるいは同等に動作した。
- 参考スコア(独自算出の注目度): 0.4588028371034407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Morphological and diagnostic evaluation of pediatric musculoskeletal system
is crucial in clinical practice. However, most segmentation models do not
perform well on scarce pediatric imaging data. We propose a new pre-trained
regularized convolutional encoder-decoder network for the challenging task of
segmenting heterogeneous pediatric magnetic resonance (MR) images. To this end,
we have conceived a novel optimization scheme for the segmentation network
which comprises additional regularization terms to the loss function. In order
to obtain globally consistent predictions, we incorporate a shape priors based
regularization, derived from a non-linear shape representation learnt by an
auto-encoder. Additionally, an adversarial regularization computed by a
discriminator is integrated to encourage precise delineations. The proposed
method is evaluated for the task of multi-bone segmentation on two scarce
pediatric imaging datasets from ankle and shoulder joints, comprising
pathological as well as healthy examinations. The proposed method performed
either better or at par with previously proposed approaches for Dice,
sensitivity, specificity, maximum symmetric surface distance, average symmetric
surface distance, and relative absolute volume difference metrics. We
illustrate that the proposed approach can be easily integrated into various
bone segmentation strategies and can improve the prediction accuracy of models
pre-trained on large non-medical images databases. The obtained results bring
new perspectives for the management of pediatric musculoskeletal disorders.
- Abstract(参考訳): 小児筋骨格系の形態学的および診断的評価は臨床において重要である。
しかし、ほとんどのセグメンテーションモデルは、少ない小児画像データではうまく機能しない。
異種小児磁気共鳴 (mr) 画像のセグメント化を課題とする新しい事前学習型正規化畳み込みエンコーダ-デコーダネットワークを提案する。
そこで我々は,損失関数の追加正規化項を含むセグメンテーションネットワークの新しい最適化手法を考案した。
グローバルに一貫した予測を得るために,オートエンコーダで学習した非線形形状表現から得られる,形状先行に基づく正規化を組み込む。
さらに、判別器によって計算される逆正則化を統合して正確な記述を促進する。
提案手法は, 病態と健康な検査を含む足関節と肩関節からの2つの希薄な小児画像データセットにおける多関節分節の課題について評価した。
提案手法は,Dice, 感度, 特異性, 最大対称表面距離, 平均対称表面距離, および相対絶対体積差の測定値について, 従来提案した手法と同等あるいは同等に動作する。
提案手法は, 様々な骨分割戦略に容易に統合でき, 大規模非医療画像データベースで事前学習したモデルの予測精度を向上できることを示す。
その結果,小児筋骨格障害に対する新たな視点が得られた。
関連論文リスト
- Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image
Segmentation [21.6412682130116]
より正確な表現を学習するために、これらの固有対称性を符号化することで、新しいグループ同変セグメンテーションフレームワークを提案する。
GER-UNet(Group Equivariant Res-UNet)が通常のCNNよりも優れていることを示す。
新たに構築されたGER-UNetは、サンプルの複雑さとフィルタの冗長性を減少させる可能性を示している。
論文 参考訳(メタデータ) (2022-07-29T04:28:20Z) - Generalizable multi-task, multi-domain deep segmentation of sparse
pediatric imaging datasets via multi-scale contrastive regularization and
multi-joint anatomical priors [0.41998444721319217]
本稿では,複数のデータセットに対して単一セグメンテーションネットワークを最適化する,新しいマルチタスク・マルチドメイン学習フレームワークを提案する。
足関節, 膝関節, 肩関節の3つの軽度, 小児画像データセットを用いた骨分節術の成績について検討した。
論文 参考訳(メタデータ) (2022-07-27T12:59:16Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - Multi-Task, Multi-Domain Deep Segmentation with Shared Representations
and Contrastive Regularization for Sparse Pediatric Datasets [0.5249805590164902]
マルチタスクおよびマルチドメイン学習フレームワークを用いて,解剖学の異なる部分から生じるセグメンテーションモデルをトレーニングすることを提案する。
提案するセグメンテーションネットワークは、共有畳み込みフィルタ、各データセット統計を計算するドメイン固有のバッチ正規化パラメータを含む。
骨分節に対する足関節および肩関節の2つの小児画像データセットについて検討した。
論文 参考訳(メタデータ) (2021-05-21T12:26:05Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
サイクル一貫性のある生成共役ネットワークは、ソースとターゲットドメイン間のイメージセットの調和に使われてきた。
これらの手法は、不安定性、コントラストの逆転、病理の難治性操作、および実際の医用画像における信頼性を制限したステガノグラフィーマッピングの傾向が強い。
解剖学的レイアウトを維持しながらスキャナ間の調和を低減するセグメンテーション正規化画像翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-11T23:53:51Z) - Multi-Structure Deep Segmentation with Shape Priors and Latent
Adversarial Regularization [0.5249805590164902]
MR画像における多構造骨変形の深層学習に基づく正規化セグメンテーション法を提案する。
新たに考案した形状コード判別器に基づき,本手法は深層ネットワークに解剖学の学習可能な形状表現に従うよう強制する。
本研究は足関節および肩関節からの2つの小児筋骨格イメージングデータセットにおける術中正規化法と比較した。
論文 参考訳(メタデータ) (2021-01-25T15:43:40Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
UNetによって生成された特徴ピラミッド表現を洗練・統合するための文脈対応改良ネットワーク(CAR-Net)を提案する。
正中線における脳の構造的接続性を維持するため、我々は新しい接続性レギュラーロスを導入する。
提案手法は, パラメータを少なくし, 4つの評価指標で3つの最先端手法より優れる。
論文 参考訳(メタデータ) (2020-07-10T14:01:20Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。