Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models
- URL: http://arxiv.org/abs/2009.07703v2
- Date: Mon, 15 Mar 2021 15:59:08 GMT
- Title: Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models
- Authors: Hang Yu, Songwei Wu, and Justin Dauwels
- Abstract summary: Estimating time-varying graphical models is of paramount importance in various social, financial, biological, and engineering systems.
Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness.
We propose a low-complexity tuning-free Bayesian approach, named BADGE.
- Score: 19.591265962713837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating time-varying graphical models are of paramount importance in
various social, financial, biological, and engineering systems, since the
evolution of such networks can be utilized for example to spot trends, detect
anomalies, predict vulnerability, and evaluate the impact of interventions.
Existing methods require extensive tuning of parameters that control the graph
sparsity and temporal smoothness. Furthermore, these methods are
computationally burdensome with time complexity O(NP^3) for P variables and N
time points. As a remedy, we propose a low-complexity tuning-free Bayesian
approach, named BADGE. Specifically, we impose temporally-dependent
spike-and-slab priors on the graphs such that they are sparse and varying
smoothly across time. A variational inference algorithm is then derived to
learn the graph structures from the data automatically. Owning to the
pseudo-likelihood and the mean-field approximation, the time complexity of
BADGE is only O(NP^2). Additionally, by identifying the frequency-domain
resemblance to the time-varying graphical models, we show that BADGE can be
extended to learning frequency-varying inverse spectral density matrices, and
yields graphical models for multivariate stationary time series. Numerical
results on both synthetic and real data show that that BADGE can better recover
the underlying true graphs, while being more efficient than the existing
methods, especially for high-dimensional cases.
Related papers
- Extreme Value Modelling of Feature Residuals for Anomaly Detection in Dynamic Graphs [14.8066991252587]
detecting anomalies in a temporal sequence of graphs can be applied to areas such as the detection of accidents in transport networks and cyber attacks in computer networks.
Existing methods for detecting abnormal graphs can suffer from multiple limitations, such as high false positive rates and difficulties with handling variable-sized graphs and non-trivial temporal dynamics.
We propose a technique where temporal dependencies are explicitly modelled via time series analysis of a large set of pertinent graph features, followed by using residuals to remove the dependencies.
arXiv Detail & Related papers (2024-10-08T05:00:53Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF) is a novel deep learning model that joins graph learning and forecasting.
In this paper, we propose a brand new method named Smooth Sparse Unit (SSU) to learn sparse and continuous graph adjacency matrix.
Our model achieves state-of-the-art performances with minor trainable parameters.
arXiv Detail & Related papers (2022-01-24T13:35:37Z) - Discrete Graph Structure Learning for Forecasting Multiple Time Series [14.459541930646205]
Time series forecasting is an extensively studied subject in statistics, economics, and computer science.
In this work, we propose learning the structure simultaneously with a graph neural network (GNN) if the graph is unknown.
Empirical evaluations show that our method is simpler, more efficient, and better performing than a recently proposed bilevel learning approach for graph structure learning.
arXiv Detail & Related papers (2021-01-18T03:36:33Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.