Better Model Selection with a new Definition of Feature Importance
- URL: http://arxiv.org/abs/2009.07708v1
- Date: Wed, 16 Sep 2020 14:32:22 GMT
- Title: Better Model Selection with a new Definition of Feature Importance
- Authors: Fan Fang, Carmine Ventre, Lingbo Li, Leslie Kanthan, Fan Wu, Michail
Basios
- Abstract summary: Feature importance aims at measuring how crucial each input feature is for model prediction.
In this paper, we propose a new tree-model explanation approach for model selection.
- Score: 8.914907178577476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature importance aims at measuring how crucial each input feature is for
model prediction. It is widely used in feature engineering, model selection and
explainable artificial intelligence (XAI). In this paper, we propose a new
tree-model explanation approach for model selection. Our novel concept
leverages the Coefficient of Variation of a feature weight (measured in terms
of the contribution of the feature to the prediction) to capture the dispersion
of importance over samples. Extensive experimental results show that our novel
feature explanation performs better than general cross validation method in
model selection both in terms of time efficiency and accuracy performance.
Related papers
- REFRESH: Responsible and Efficient Feature Reselection Guided by SHAP Values [17.489279048199304]
REFRESH is a method to reselect features so that additional constraints that are desirable towards model performance can be achieved without having to train several new models.
REFRESH's underlying algorithm is a novel technique using SHAP values and correlation analysis that can approximate for the predictions of a model without having to train these models.
arXiv Detail & Related papers (2024-03-13T18:06:43Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Rationalizing Predictions by Adversarial Information Calibration [65.19407304154177]
We train two models jointly: one is a typical neural model that solves the task at hand in an accurate but black-box manner, and the other is a selector-predictor model that additionally produces a rationale for its prediction.
We use an adversarial technique to calibrate the information extracted by the two models such that the difference between them is an indicator of the missed or over-selected features.
arXiv Detail & Related papers (2023-01-15T03:13:09Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Learning from the Best: Rationalizing Prediction by Adversarial
Information Calibration [39.685626118667074]
We train two models jointly: one is a typical neural model that solves the task at hand in an accurate but black-box manner, and the other is a selector-predictor model that additionally produces a rationale for its prediction.
We use an adversarial-based technique to calibrate the information extracted by the two models.
For natural language tasks, we propose to use a language-model-based regularizer to encourage the extraction of fluent rationales.
arXiv Detail & Related papers (2020-12-16T11:54:15Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - PSD2 Explainable AI Model for Credit Scoring [0.0]
The aim of this project is to develop and test advanced analytical methods to improve the prediction accuracy of Credit Risk Models.
The project focuses on applying an explainable machine learning model to bank-related databases.
arXiv Detail & Related papers (2020-11-20T12:12:38Z) - Leveraging Model Inherent Variable Importance for Stable Online Feature
Selection [16.396739487911056]
We introduce FIRES, a novel framework for online feature selection.
Our framework is generic in that it leaves the choice of the underlying model to the user.
Experiments show that the proposed framework is clearly superior in terms of feature selection stability.
arXiv Detail & Related papers (2020-06-18T10:01:18Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.