論文の概要: Strategy Proof Mechanisms for Facility Location with Capacity Limits
- arxiv url: http://arxiv.org/abs/2009.07986v1
- Date: Thu, 17 Sep 2020 00:29:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 11:55:38.233336
- Title: Strategy Proof Mechanisms for Facility Location with Capacity Limits
- Title(参考訳): 容量制限のある施設立地の戦略実証機構
- Authors: Toby Walsh
- Abstract要約: キャパシティの制約により 施設配置のための 戦略実証機構の設計が困難になる
反故意に、最適な解をいかにうまく近似できるかの保証を改善することができる。
- 参考スコア(独自算出の注目度): 17.68987003293372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important feature of many real world facility location problems are
capacity limits on the facilities. We show here how capacity constraints make
it harder to design strategy proof mechanisms for facility location, but
counter-intuitively can improve the guarantees on how well we can approximate
the optimal solution.
- Abstract(参考訳): 実世界の施設配置問題における重要な特徴は、施設の容量制限である。
ここでは,キャパシティ制約が施設配置の戦略証明機構の設計を困難にすることを示すが,その最適解の近似性に対する保証を直観的に改善することができる。
関連論文リスト
- Facility Location Games with Scaling Effects [69.28397508730046]
古典的な施設配置問題を考慮し、各エージェントの個々のコスト関数が、スケーリング係数によって乗算された施設からの距離と等しくなる変動を考察する。
戦略と匿名のメカニズムによって達成できる総コストと最大コストの近似比について結果が得られた。
論文 参考訳(メタデータ) (2024-02-29T07:08:18Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
本稿では,複数の制約仕様を事前に特定しない制約付き強化学習(RL)のクラスについて検討する。
報酬訓練目標と制約満足度との間に不明確なトレードオフがあるため、適切な制約仕様を特定することは困難である。
我々は、ポリシーと制約仕様を一緒に検索する新しい制約付きRLアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:28:23Z) - Nash Welfare and Facility Location [82.81742334337336]
沿線にエージェントを配置する施設を配置することの問題点を考察する。
エージェントのユーティリティの産物として定義されたナッシュの福祉目的機能は、公正性と効率性の妥協をもたらすことが知られている。
論文 参考訳(メタデータ) (2023-10-06T09:06:44Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
我々は,Rydberg tweezerシステムにおける2ビットゲートの機械学習支援設計を実演する。
我々は,高忠実度CNOTゲートを実装した最適パルス列を生成する。
単一量子ビット演算の局所的な制御は、原子列上で量子計算を行うのに十分であることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:24:51Z) - Exploiting In-Constraint Energy in Constrained Variational Quantum
Optimization [7.541345730271882]
一般に、そのような制約は回路内で容易に符号化することができず、量子回路の測定結果が制約を尊重することが保証されない。
本稿では,制約付き最適化問題に対する非実装型量子アンサテイズによる新しい解法を提案する。
シミュレータや量子ハードウェア上での高速なプロトタイピングのために,QiskitとインターフェースするPythonパッケージであるQVoiceで実装した。
論文 参考訳(メタデータ) (2022-11-13T20:58:00Z) - Transit facility allocation: Hybrid quantum-classical optimization [0.0]
交通施設の整備は、サービスの質を向上させるための費用対効果の高い方法である。
本稿では、GIS、意思決定分析、量子技術を統合する最適化フレームワークを開発する。
同一のサービスアクセシビリティを維持しながら、施設数を40%削減することで、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-10-22T21:53:00Z) - Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization [57.88118988775461]
本稿では,ニューラルポリシー内での凸操作制約を強制するために,PROF(Projected Feasibility)を提案する。
エネルギー効率の高い建築操作とインバータ制御の2つの応用についてPROFを実証する。
論文 参考訳(メタデータ) (2021-05-19T01:58:10Z) - Learning Robust Hybrid Control Barrier Functions for Uncertain Systems [68.30783663518821]
我々は,ロバストな安全を確保する制御則を合成する手段として,ロバストなハイブリッド制御障壁関数を提案する。
この概念に基づき,データからロバストなハイブリッド制御障壁関数を学習するための最適化問題を定式化する。
我々の技術は、モデル不確実性の対象となるコンパス歩行歩行者の魅力領域を安全に拡張することを可能にする。
論文 参考訳(メタデータ) (2021-01-16T17:53:35Z) - Strategy Proof Mechanisms for Facility Location at Limited Locations [17.68987003293372]
施設の立地問題は、施設が任意の位置に置かれることをしばしば許可する。
もし、高速道路の出口やバス停の近くのような特定の場所にしか施設が設置できないとしたらどうだろうか。
このような制約が施設の位置に与える影響を,施設の配置のための戦略実証機構の性能に与える影響を考察する。
論文 参考訳(メタデータ) (2020-09-17T00:22:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。