論文の概要: Multi-modal Summarization for Video-containing Documents
- arxiv url: http://arxiv.org/abs/2009.08018v1
- Date: Thu, 17 Sep 2020 02:13:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 11:46:08.800521
- Title: Multi-modal Summarization for Video-containing Documents
- Title(参考訳): ビデオを含む文書のマルチモーダル要約
- Authors: Xiyan Fu and Jun Wang and Zhenglu Yang
- Abstract要約: 本稿では,文書とその関連ビデオから要約する,新しいマルチモーダル要約タスクを提案する。
総合的な実験により,提案手法は複数モーダル要約に有用であり,既存手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 23.750585762568665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Summarization of multimedia data becomes increasingly significant as it is
the basis for many real-world applications, such as question answering, Web
search, and so forth. Most existing multi-modal summarization works however
have used visual complementary features extracted from images rather than
videos, thereby losing abundant information. Hence, we propose a novel
multi-modal summarization task to summarize from a document and its associated
video. In this work, we also build a baseline general model with effective
strategies, i.e., bi-hop attention and improved late fusion mechanisms to
bridge the gap between different modalities, and a bi-stream summarization
strategy to employ text and video summarization simultaneously. Comprehensive
experiments show that the proposed model is beneficial for multi-modal
summarization and superior to existing methods. Moreover, we collect a novel
dataset and it provides a new resource for future study that results from
documents and videos.
- Abstract(参考訳): マルチメディアデータの要約は,質問応答やWeb検索など,多くの実世界のアプリケーションの基礎となっているため,ますます重要になっている。
しかし、既存のマルチモーダル要約作業の多くは、ビデオではなく画像から抽出した視覚補完機能を使用しており、豊富な情報を失う。
そこで本稿では,文書とその関連ビデオから要約する,新しいマルチモーダル要約タスクを提案する。
本研究は,両足の注意と遅延融合機構を改良し,異なるモード間のギャップを埋めるベースライン汎用モデルを構築し,テキストとビデオの要約を同時に利用するバイストリーム要約戦略を構築した。
包括的実験により,提案手法はマルチモーダル要約に有用であり,既存の手法よりも優れていることが示された。
さらに,新たなデータセットを収集し,文書やビデオから得られる将来の研究のための新たなリソースを提供する。
関連論文リスト
- Conditional Modeling Based Automatic Video Summarization [70.96973928590958]
ビデオ要約の目的は、全体を伝えるのに必要な重要な情報を保持しながら、自動的にビデオを短縮することである。
映像要約法は視覚的連続性や多様性などの視覚的要因に依存しており、ビデオの内容を完全に理解するには不十分である。
映像要約への新たなアプローチは、人間が地上の真実のビデオ要約を作成する方法から得られる知見に基づいて提案されている。
論文 参考訳(メタデータ) (2023-11-20T20:24:45Z) - Causal Video Summarizer for Video Exploration [74.27487067877047]
Causal Video Summarizer (CVS) はビデオとクエリ間の対話的な情報をキャプチャするために提案されている。
既存のマルチモーダル映像要約データセットの評価から,提案手法が有効であることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2023-07-04T22:52:16Z) - Alternative Telescopic Displacement: An Efficient Multimodal Alignment Method [3.0903319879656084]
本稿では,マルチモーダル情報の融合に革命をもたらす機能アライメントに対する革新的なアプローチを提案する。
提案手法では,異なるモードをまたいだ特徴表現の遠隔的変位と拡張の新たな反復的プロセスを用いて,共有特徴空間内の一貫性のある統一表現を導出する。
論文 参考訳(メタデータ) (2023-06-29T13:49:06Z) - Learning Summary-Worthy Visual Representation for Abstractive
Summarization in Video [34.202514532882]
本稿では,抽象的な要約を容易にする要約価値のある視覚表現を学習するための新しいアプローチを提案する。
本手法は, クロスモーダル転写データと擬似要約から抽出した知識の両方から, 要約に値する情報を利用する。
論文 参考訳(メタデータ) (2023-05-08T16:24:46Z) - Align and Attend: Multimodal Summarization with Dual Contrastive Losses [57.83012574678091]
マルチモーダル要約の目標は、異なるモーダルから最も重要な情報を抽出し、出力要約を形成することである。
既存の手法では、異なるモダリティ間の時間的対応の活用に失敗し、異なるサンプル間の本質的な相関を無視する。
A2Summ(Align and Attend Multimodal Summarization)は、マルチモーダル入力を効果的に整列し、参加できる統一型マルチモーダルトランスフォーマーモデルである。
論文 参考訳(メタデータ) (2023-03-13T17:01:42Z) - TLDW: Extreme Multimodal Summarisation of News Videos [76.50305095899958]
TL;DW - Too Long; Didn't Watch のシナリオに対して,Xtreme Multimodal Summarisation with Multimodal Output (XMSMO)を導入する。
XMSMOは,映像と文書のペアを非常に短い長さの要約にまとめることを目的としており,その内容は1つの表紙フレームを視覚的要約として,1つの文をテキスト要約として構成する。
本手法は, 参照要約を使わずに, 最適輸送計画に基づく意味分布間の距離の観点から, 視覚的およびテキスト的カバレッジを最適化することにより, 訓練を行う。
論文 参考訳(メタデータ) (2022-10-16T08:19:59Z) - Hierarchical3D Adapters for Long Video-to-text Summarization [79.01926022762093]
マルチモーダル情報は、メモリ重大で完全に微調整されたテキスト要約方法よりも優れたパフォーマンスを提供する。
実験により, マルチモーダル情報は, よりメモリ量が多く, 完全に微調整されたテキスト要約法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2022-10-10T16:44:36Z) - MHMS: Multimodal Hierarchical Multimedia Summarization [80.18786847090522]
視覚領域と言語領域を相互作用させることにより,マルチモーダル階層型マルチメディア要約(MHMS)フレームワークを提案する。
本手法は,ビデオとテキストのセグメンテーションと要約モジュールをそれぞれ含んでいる。
ドメイン間のアライメントの目的を最適な輸送距離で定式化し、代表とテキストの要約を生成する。
論文 参考訳(メタデータ) (2022-04-07T21:00:40Z) - See, Hear, Read: Leveraging Multimodality with Guided Attention for
Abstractive Text Summarization [14.881597737762316]
我々は,NDSS,ICML,NeurIPSなどの著名な学術カンファレンスのプレゼンテーションから収集した,様々な期間のビデオを用いた抽象テキスト要約のための最初の大規模データセットを紹介する。
次に,多モード変換器をベースとしたデコーダのみの言語モデルであるnameを提案し,テキスト要約タスクの様々な入力モードにおけるモーダル内およびモーダル間ダイナミクスを本質的にキャプチャする。
論文 参考訳(メタデータ) (2021-05-20T08:56:33Z) - GPT2MVS: Generative Pre-trained Transformer-2 for Multi-modal Video
Summarization [18.543372365239673]
提案モデルは,コンテキスト化された映像要約制御器,マルチモーダルアテンション機構,対話型アテンションネットワーク,映像要約生成器から構成される。
その結果, 最新手法と比較して, 精度5.88%, F1スコアが4.06%上昇し, このモデルが有効であることが示された。
論文 参考訳(メタデータ) (2021-04-26T10:50:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。