論文の概要: An Extension of Fano's Inequality for Characterizing Model
Susceptibility to Membership Inference Attacks
- arxiv url: http://arxiv.org/abs/2009.08097v1
- Date: Thu, 17 Sep 2020 06:37:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 08:10:04.975727
- Title: An Extension of Fano's Inequality for Characterizing Model
Susceptibility to Membership Inference Attacks
- Title(参考訳): 会員推論攻撃に対するモデル感受性を特徴付けるファノの不等式の拡張
- Authors: Sumit Kumar Jha, Susmit Jha, Rickard Ewetz, Sunny Raj, Alvaro
Velasquez, Laura L. Pullum, Ananthram Swami
- Abstract要約: 深層ニューラルネットワークにおけるメンバシップ推論攻撃の成功確率は,入力とアクティベーションの相互情報を用いてバウンドできることを示す。
これにより、メンバーシップ推論攻撃に対するDNNモデルの感受性を測定するために、相互情報を使用することが可能である。
- 参考スコア(独自算出の注目度): 28.366183028100057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have been shown to be vulnerable to membership inference
attacks wherein the attacker aims to detect whether specific input data were
used to train the model. These attacks can potentially leak private or
proprietary data. We present a new extension of Fano's inequality and employ it
to theoretically establish that the probability of success for a membership
inference attack on a deep neural network can be bounded using the mutual
information between its inputs and its activations. This enables the use of
mutual information to measure the susceptibility of a DNN model to membership
inference attacks. In our empirical evaluation, we show that the correlation
between the mutual information and the susceptibility of the DNN model to
membership inference attacks is 0.966, 0.996, and 0.955 for CIFAR-10, SVHN and
GTSRB models, respectively.
- Abstract(参考訳): ディープニューラルネットワークは、攻撃者が特定の入力データがモデルのトレーニングに使われたかどうかを検出することを目的としているメンバーシップ推論攻撃に弱いことが示されている。
これらの攻撃は、プライベートまたはプロプライエタリなデータをリークする可能性がある。
本稿では,ニューラルネットワークにおけるメンバシップ推論攻撃の成功確率を,その入力とそのアクティベーション間の相互情報を用いて境界化することができることを理論的に確立するために,ファノの不等式を新たに拡張した。
これにより、相互情報を用いてDNNモデルのメンバシップ推論攻撃に対する感受性を測定することができる。
実験評価の結果,cifar-10,svhn,gtsrbモデルでは,dnnモデルの相互情報とメンバーシップ推論攻撃に対する感受性の相関が0.966,0.996,0.955であった。
関連論文リスト
- FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks [62.897993591443594]
FullCertは、音と決定論的境界を持つ最初のエンドツーエンドの認証器である。
2つのデータセットに対してFullCertの有効性を実験的に示す。
論文 参考訳(メタデータ) (2024-06-17T13:23:52Z) - GLiRA: Black-Box Membership Inference Attack via Knowledge Distillation [4.332441337407564]
我々は,会員推論攻撃に対する感受性と,蒸留による攻撃を盗む機能に対する脆弱性との関係について検討する。
我々は,ブラックボックスニューラルネットワークに対するメンバシップ推論攻撃に対する蒸留誘導型アプローチであるGLiRAを提案する。
提案手法は,複数の画像分類データセットおよびモデルにまたがって評価され,知識蒸留によって誘導された場合の確率比攻撃が,ブラックボックス設定における最先端の会員推論攻撃よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-13T08:52:04Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Bayesian Learning with Information Gain Provably Bounds Risk for a
Robust Adversarial Defense [27.545466364906773]
敵攻撃に対して堅牢なディープニューラルネットワークモデルを学習するための新しいアルゴリズムを提案する。
本モデルでは, PGD 攻撃下での対人訓練と Adv-BNN との比較により, 強靭性は20%まで向上した。
論文 参考訳(メタデータ) (2022-12-05T03:26:08Z) - Purifier: Defending Data Inference Attacks via Transforming Confidence
Scores [27.330482508047428]
そこで本研究では,PURIFIER(PURIFIER)を用いたメンバシップ推論攻撃に対する防御手法を提案する。
PURIFIERはメンバーシップ推論攻撃を高い効率と効率で防御する。
PURIFIERは、敵のモデル反転攻撃や属性推論攻撃の防御にも有効である。
論文 参考訳(メタデータ) (2022-12-01T16:09:50Z) - Generative Models with Information-Theoretic Protection Against
Membership Inference Attacks [6.840474688871695]
GAN(Generative Adversarial Networks)のような深層生成モデルは、多様な高忠実度データサンプルを合成する。
GANは、訓練されたデータから個人情報を開示し、敵の攻撃を受けやすい可能性がある。
本稿では,生成モデルがトレーニングデータに過度に適合しないようにし,一般化性を奨励する情報理論的動機付け正規化項を提案する。
論文 参考訳(メタデータ) (2022-05-31T19:29:55Z) - Formalizing and Estimating Distribution Inference Risks [11.650381752104298]
プロパティ推論攻撃の形式的および一般的な定義を提案する。
以上の結果から,安価なメタクラス化攻撃は高価なメタクラス化攻撃と同じくらい効果的であることが示唆された。
我々は、最先端のプロパティ推論攻撃を畳み込みニューラルネットワークに拡張する。
論文 参考訳(メタデータ) (2021-09-13T14:54:39Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
ディープニューラルネットワークの敵対的脆弱性は、機械学習において大きな注目を集めている。
我々は、因果関係を敵対的脆弱性の軽減に組み込むことを提案する。
我々の手法は、敵の脆弱性を緩和するために因果性を利用する最初の試みと見なすことができる。
論文 参考訳(メタデータ) (2021-06-11T06:55:02Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。