Online Alternate Generator against Adversarial Attacks
- URL: http://arxiv.org/abs/2009.08110v1
- Date: Thu, 17 Sep 2020 07:11:16 GMT
- Title: Online Alternate Generator against Adversarial Attacks
- Authors: Haofeng Li, Yirui Zeng, Guanbin Li, Liang Lin, Yizhou Yu
- Abstract summary: Deep learning models are notoriously sensitive to adversarial examples which are synthesized by adding quasi-perceptible noises on real images.
We propose a portable defense method, online alternate generator, which does not need to access or modify the parameters of the target networks.
The proposed method works by online synthesizing another image from scratch for an input image, instead of removing or destroying adversarial noises.
- Score: 144.45529828523408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of computer vision has witnessed phenomenal progress in recent
years partially due to the development of deep convolutional neural networks.
However, deep learning models are notoriously sensitive to adversarial examples
which are synthesized by adding quasi-perceptible noises on real images. Some
existing defense methods require to re-train attacked target networks and
augment the train set via known adversarial attacks, which is inefficient and
might be unpromising with unknown attack types. To overcome the above issues,
we propose a portable defense method, online alternate generator, which does
not need to access or modify the parameters of the target networks. The
proposed method works by online synthesizing another image from scratch for an
input image, instead of removing or destroying adversarial noises. To avoid
pretrained parameters exploited by attackers, we alternately update the
generator and the synthesized image at the inference stage. Experimental
results demonstrate that the proposed defensive scheme and method outperforms a
series of state-of-the-art defending models against gray-box adversarial
attacks.
Related papers
- Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
An adversarial example is a modified input image designed to cause a Machine Learning (ML) model to make a mistake.
This study presents a practical and effective solution -- using predictive coding networks (PCnets) as an auxiliary step for adversarial defence.
arXiv Detail & Related papers (2024-10-31T21:38:05Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Restricted Black-box Adversarial Attack Against DeepFake Face Swapping [70.82017781235535]
We introduce a practical adversarial attack that does not require any queries to the facial image forgery model.
Our method is built on a substitute model persuing for face reconstruction and then transfers adversarial examples from the substitute model directly to inaccessible black-box DeepFake models.
arXiv Detail & Related papers (2022-04-26T14:36:06Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Attack to Fool and Explain Deep Networks [59.97135687719244]
We counter-argue by providing evidence of human-meaningful patterns in adversarial perturbations.
Our major contribution is a novel pragmatic adversarial attack that is subsequently transformed into a tool to interpret the visual models.
arXiv Detail & Related papers (2021-06-20T03:07:36Z) - Error Diffusion Halftoning Against Adversarial Examples [85.11649974840758]
Adversarial examples contain carefully crafted perturbations that can fool deep neural networks into making wrong predictions.
We propose a new image transformation defense based on error diffusion halftoning, and combine it with adversarial training to defend against adversarial examples.
arXiv Detail & Related papers (2021-01-23T07:55:02Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
Deep neural networks, which form the basis of such systems, are highly susceptible to a specific type of attack, called adversarial attacks.
A hacker can, even with bare minimum computation, generate adversarial examples (images or data points that belong to another class, but consistently fool the model to get misclassified as genuine) and crumble the basis of such algorithms.
We show two effective techniques, namely Dropout and Denoising Autoencoders, and show their success in preventing such attacks from fooling the model.
arXiv Detail & Related papers (2020-12-10T09:34:41Z) - AdvFoolGen: Creating Persistent Troubles for Deep Classifiers [17.709146615433458]
We present a new black-box attack termed AdvFoolGen, which can generate attacking images from the same feature space as that of the natural images.
We demonstrate the effectiveness and robustness of our attack in the face of state-of-the-art defense techniques.
arXiv Detail & Related papers (2020-07-20T21:27:41Z) - OGAN: Disrupting Deepfakes with an Adversarial Attack that Survives
Training [0.0]
We introduce a class of adversarial attacks that can disrupt face-swapping autoencoders.
We propose the Oscillating GAN (OGAN) attack, a novel attack optimized to be training-resistant.
These results demonstrate the existence of training-resistant adversarial attacks, potentially applicable to a wide range of domains.
arXiv Detail & Related papers (2020-06-17T17:18:29Z) - Class-Aware Domain Adaptation for Improving Adversarial Robustness [27.24720754239852]
adversarial training has been proposed to train networks by injecting adversarial examples into the training data.
We propose a novel Class-Aware Domain Adaptation (CADA) method for adversarial defense without directly applying adversarial training.
arXiv Detail & Related papers (2020-05-10T03:45:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.