Class-Aware Domain Adaptation for Improving Adversarial Robustness
- URL: http://arxiv.org/abs/2005.04564v1
- Date: Sun, 10 May 2020 03:45:19 GMT
- Title: Class-Aware Domain Adaptation for Improving Adversarial Robustness
- Authors: Xianxu Hou, Jingxin Liu, Bolei Xu, Xiaolong Wang, Bozhi Liu, Guoping
Qiu
- Abstract summary: adversarial training has been proposed to train networks by injecting adversarial examples into the training data.
We propose a novel Class-Aware Domain Adaptation (CADA) method for adversarial defense without directly applying adversarial training.
- Score: 27.24720754239852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have demonstrated convolutional neural networks are vulnerable
to adversarial examples, i.e., inputs to machine learning models that an
attacker has intentionally designed to cause the models to make a mistake. To
improve the adversarial robustness of neural networks, adversarial training has
been proposed to train networks by injecting adversarial examples into the
training data. However, adversarial training could overfit to a specific type
of adversarial attack and also lead to standard accuracy drop on clean images.
To this end, we propose a novel Class-Aware Domain Adaptation (CADA) method for
adversarial defense without directly applying adversarial training.
Specifically, we propose to learn domain-invariant features for adversarial
examples and clean images via a domain discriminator. Furthermore, we introduce
a class-aware component into the discriminator to increase the discriminative
power of the network for adversarial examples. We evaluate our newly proposed
approach using multiple benchmark datasets. The results demonstrate that our
method can significantly improve the state-of-the-art of adversarial robustness
for various attacks and maintain high performances on clean images.
Related papers
- Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
An adversarial example is a modified input image designed to cause a Machine Learning (ML) model to make a mistake.
This study presents a practical and effective solution -- using predictive coding networks (PCnets) as an auxiliary step for adversarial defence.
arXiv Detail & Related papers (2024-10-31T21:38:05Z) - Language Guided Adversarial Purification [3.9931474959554496]
Adversarial purification using generative models demonstrates strong adversarial defense performance.
New framework, Language Guided Adversarial Purification (LGAP), utilizing pre-trained diffusion models and caption generators.
arXiv Detail & Related papers (2023-09-19T06:17:18Z) - Improving Hyperspectral Adversarial Robustness Under Multiple Attacks [2.741266294612776]
We propose an Adversarial Discriminator Ensemble Network (ADE-Net) to combat this issue.
In the proposed method, a discriminator network is used to separate data by attack type into their specific attack-expert ensemble network.
arXiv Detail & Related papers (2022-10-28T18:21:45Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Learning from Attacks: Attacking Variational Autoencoder for Improving
Image Classification [17.881134865491063]
Adversarial attacks are often considered as threats to the robustness of Deep Neural Networks (DNNs)
This work analyzes adversarial attacks from a different perspective. Namely, adversarial examples contain implicit information that is useful to the predictions.
We propose an algorithmic framework that leverages the advantages of the DNNs for data self-expression and task-specific predictions.
arXiv Detail & Related papers (2022-03-11T08:48:26Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Adversarial Feature Desensitization [12.401175943131268]
We propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field.
Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs.
arXiv Detail & Related papers (2020-06-08T14:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.