Automatic deep learning for trend prediction in time series data
- URL: http://arxiv.org/abs/2009.08510v1
- Date: Thu, 17 Sep 2020 19:47:05 GMT
- Title: Automatic deep learning for trend prediction in time series data
- Authors: Kouame Hermann Kouassi and Deshendran Moodley
- Abstract summary: Deep Neural Network (DNN) algorithms have been explored for predicting trends in time series data.
In many real world applications, time series data are captured from dynamic systems.
We show how a recent AutoML tool can be effectively used to automate the model development process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Deep Neural Network (DNN) algorithms have been explored for
predicting trends in time series data. In many real world applications, time
series data are captured from dynamic systems. DNN models must provide stable
performance when they are updated and retrained as new observations becomes
available. In this work we explore the use of automatic machine learning
techniques to automate the algorithm selection and hyperparameter optimisation
process for trend prediction. We demonstrate how a recent AutoML tool,
specifically the HpBandSter framework, can be effectively used to automate DNN
model development. Our AutoML experiments found optimal configurations that
produced models that compared well against the average performance and
stability levels of configurations found during the manual experiments across
four data sets.
Related papers
- Data-Augmented Predictive Deep Neural Network: Enhancing the extrapolation capabilities of non-intrusive surrogate models [0.5735035463793009]
We propose a new deep learning framework, where kernel dynamic mode decomposition (KDMD) is employed to evolve the dynamics of the latent space generated by the encoder part of a convolutional autoencoder (CAE)
After adding the KDMD-decoder-extrapolated data into the original data set, we train the CAE along with a feed-forward deep neural network using the augmented data.
The trained network can predict future states outside the training time interval at any out-of-training parameter samples.
arXiv Detail & Related papers (2024-10-17T09:26:14Z) - auto-sktime: Automated Time Series Forecasting [18.640815949661903]
We introduce auto-sktime, a novel framework for automated time series forecasting.
The proposed framework uses the power of automated machine learning (AutoML) techniques to automate the creation of the entire forecasting pipeline.
Experimental results on 64 diverse real-world time series datasets demonstrate the effectiveness and efficiency of the framework.
arXiv Detail & Related papers (2023-12-13T21:34:30Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - AutoFlow: Learning a Better Training Set for Optical Flow [62.40293188964933]
AutoFlow is a method to render training data for optical flow.
AutoFlow achieves state-of-the-art accuracy in pre-training both PWC-Net and RAFT.
arXiv Detail & Related papers (2021-04-29T17:55:23Z) - AgEBO-Tabular: Joint Neural Architecture and Hyperparameter Search with
Autotuned Data-Parallel Training for Tabular Data [11.552769149674544]
Development of high-performing predictive models for large data sets is a challenging task.
Recent automated machine learning (AutoML) is emerging as a promising approach to automate predictive model development.
We have developed AgEBO-Tabular, an approach to combine aging evolution (AgE) and a parallel NAS method that searches over neural architecture space.
arXiv Detail & Related papers (2020-10-30T16:28:48Z) - An analysis of deep neural networks for predicting trends in time series
data [0.0]
TreNet is a hybrid Deep Neural Network (DNN) algorithm for predicting trends in time series data.
We replicated the TreNet experiments on the same data sets using a walk-forward validation method and tested our optimal model over multiple independent runs to evaluate model stability.
We found that in general TreNet still performs better than the vanilla DNN models, but not on all data sets as reported in the original TreNet study.
arXiv Detail & Related papers (2020-09-16T21:24:20Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorch is a framework to enable fully automated deep learning (AutoDL)
It combines multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs)
We show that Auto-PyTorch performs better than several state-of-the-art competitors on average.
arXiv Detail & Related papers (2020-06-24T15:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.