Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction
- URL: http://arxiv.org/abs/2304.04697v2
- Date: Wed, 31 May 2023 21:17:50 GMT
- Title: Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction
- Authors: Biswadeep Chakraborty, Saibal Mukhopadhyay
- Abstract summary: We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
- Score: 13.521272923545409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy and data-efficient online time series prediction for predicting
evolving dynamical systems are critical in several fields, especially edge AI
applications that need to update continuously based on streaming data. However,
current DNN-based supervised online learning models require a large amount of
training data and cannot quickly adapt when the underlying system changes.
Moreover, these models require continuous retraining with incoming data making
them highly inefficient. To solve these issues, we present a novel Continuous
Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN),
trained with spike timing dependent plasticity (STDP). CLURSNN makes online
predictions by reconstructing the underlying dynamical system using Random
Delay Embedding by measuring the membrane potential of neurons in the recurrent
layer of the RSNN with the highest betweenness centrality. We also use
topological data analysis to propose a novel methodology using the Wasserstein
Distance between the persistence homologies of the predicted and observed time
series as a loss function. We show that the proposed online time series
prediction methodology outperforms state-of-the-art DNN models when predicting
an evolving Lorenz63 dynamical system.
Related papers
- How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - ONE-NAS: An Online NeuroEvolution based Neural Architecture Search for
Time Series Forecasting [3.3758186776249928]
This work presents the Online NeuroEvolution based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is the first neural architecture search algorithm capable of automatically designing and training new recurrent neural networks (RNNs) in an online setting.
It is shown to outperform traditional statistical time series forecasting, including naive, moving average, and exponential smoothing methods.
arXiv Detail & Related papers (2022-02-27T22:58:32Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
In this paper, a novel deep learning-based model is developed for modeling multiple temporal features in sporadic data.
The proposed model, called CARRNN, uses a generalized discrete-time autoregressive model that is trainable end-to-end using neural networks modulated by time lags.
It is applied to multivariate time-series regression tasks using data provided for Alzheimer's disease progression modeling and intensive care unit (ICU) mortality rate prediction.
arXiv Detail & Related papers (2021-04-08T12:43:44Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks [0.0]
We present a class of exponential smoothed recurrent neural networks (RNNs) which are well suited to modeling non-stationary dynamical systems arising in industrial applications.
Application of exponentially smoothed RNNs to forecasting electricity load, weather data, and stock prices highlight the efficacy of exponential smoothing of the hidden state for multi-step time series forecasting.
arXiv Detail & Related papers (2020-04-09T17:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.