論文の概要: Towards Full-line Code Completion with Neural Language Models
- arxiv url: http://arxiv.org/abs/2009.08603v1
- Date: Fri, 18 Sep 2020 03:12:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 03:15:14.277830
- Title: Towards Full-line Code Completion with Neural Language Models
- Title(参考訳): ニューラルネットワークモデルによる全行コード補完に向けて
- Authors: Wenhan Wang, Sijie Shen, Ge Li, Zhi Jin
- Abstract要約: 単一トークンではなく,コード行全体を直接完了する可能性について論じる。
最近のニューラルネットワークモデルは、コード補完の好ましいアプローチとして採用されている。
- 参考スコア(独自算出の注目度): 25.458883198815393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A code completion system suggests future code elements to developers given a
partially-complete code snippet. Code completion is one of the most useful
features in Integrated Development Environments (IDEs). Currently, most code
completion techniques predict a single token at a time. In this paper, we take
a further step and discuss the probability of directly completing a whole line
of code instead of a single token. We believe suggesting longer code sequences
can further improve the efficiency of developers. Recently neural language
models have been adopted as a preferred approach for code completion, and we
believe these models can still be applied to full-line code completion with a
few improvements. We conduct our experiments on two real-world python corpora
and evaluate existing neural models based on source code tokens or syntactical
actions. The results show that neural language models can achieve acceptable
results on our tasks, with significant room for improvements.
- Abstract(参考訳): コード補完システムは、部分的に完成したコードスニペットを開発者に提案する。
コード補完は統合開発環境(IDE)で最も有用な機能の1つである。
現在、ほとんどのコード補完技術は一度にひとつのトークンを予測する。
本稿では,さらに一歩進めて,単一トークンではなく,コード行全体を直接完了する可能性について論じる。
より長いコードシーケンスが開発者の効率をさらに改善できると考えている。
近年のニューラルネットワークモデルは,コード補完に望ましいアプローチとして採用されている。
実世界の2つのピソンコーパスで実験を行い、ソースコードトークンや構文行動に基づいて既存のニューラルモデルを評価する。
結果は、ニューラルネットワークモデルが我々のタスクで許容できる結果を得ることができ、改善の余地があることを示している。
関連論文リスト
- Does Your Neural Code Completion Model Use My Code? A Membership Inference Approach [66.51005288743153]
本稿では,現在のニューラルコード補完モデルの法的および倫理的問題について考察する。
私たちは、もともと分類タスクのために作られたメンバシップ推論アプローチ(CodeMIと呼ばれる)を調整します。
我々は,この適応型アプローチの有効性を,多種多様なニューラルコード補完モデルで評価した。
論文 参考訳(メタデータ) (2024-04-22T15:54:53Z) - LongCoder: A Long-Range Pre-trained Language Model for Code Completion [56.813974784131624]
LongCoderは自己アテンションにスライディングウィンドウ機構を採用し、グローバルアクセス可能なトークンを2種類導入している。
ブリッジトークンは入力シーケンス全体を通して挿入され、ローカル情報を集約し、グローバルな相互作用を促進する。
メモリトークンは、後で呼び出され、記憶する必要がある重要なステートメントをハイライトするために含まれます。
論文 参考訳(メタデータ) (2023-06-26T17:59:24Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
コードインテリジェンスのトレーニング済みモデルのほとんどは実行トレースを無視しており、ソースコードと構文構造のみに依存している。
我々は,大規模かつ現実的なPythonデータセットとコード実行タスクを作成するために,突然変異に基づくデータ拡張手法を開発した。
次に、コード実行事前学習とカリキュラム学習を活用して意味理解を強化するトランスフォーマーモデルであるCodeExecutorを提案する。
論文 参考訳(メタデータ) (2023-05-08T10:00:05Z) - Enriching Source Code with Contextual Data for Code Completion Models:
An Empirical Study [4.438873396405334]
コンテクストデータを用いてコードを理解しやすくすることで、コード補完作業のための事前学習された言語モデルの性能が向上するかどうかを問う。
コメントについては、マルチラインコメントの存在下でモデルの性能が向上していることが分かる。
論文 参考訳(メタデータ) (2023-04-24T17:09:14Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
既存のコード・トゥ・テキスト生成モデルは、コードの高レベルな要約のみを生成する。
我々は、コードのための高品質な説明記述の基準を特定するために、人間の研究を行う。
タスクのための多段階微調整戦略とベースラインモデルを提案する。
論文 参考訳(メタデータ) (2022-11-25T18:05:44Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z) - CodeRetriever: Unimodal and Bimodal Contrastive Learning [128.06072658302165]
関数レベルのコードセマンティック表現を訓練するために,一様および二様のコントラスト学習を組み合わせたCodeRetrieverモデルを提案する。
ノンモーダルなコントラスト学習のために、文書と関数名に基づいてポジティブなコードペアを構築するためのセマンティックガイド付き手法を設計する。
バイモーダルなコントラスト学習では、コードのドキュメンテーションとインラインコメントを活用して、テキストコードペアを構築します。
論文 参考訳(メタデータ) (2022-01-26T10:54:30Z) - Toward Less Hidden Cost of Code Completion with Acceptance and Ranking
Models [12.736207952790618]
我々は、複数のモデルの結果を組み合わせて、各モデルの利点と相反する欠陥を引き出すアンサンブルフレームワークを開発する。
本稿では,コードコンテキストと異なるコード補完モデルからデータを収集するための符号化シミュレーションを行う。
本稿では,キーストローク保存の利点と完了リスト閲覧の隠れコストを考慮した新しいコード補完評価指標であるBeefit-Cost Ratio(BCR)を提案する。
論文 参考訳(メタデータ) (2021-06-26T03:02:49Z) - Sequence Model Design for Code Completion in the Modern IDE [3.4824234779710452]
本稿では,すべての有効なキーワードとスコープ内識別子を列挙する静的解析能力と,それらの上に確率分布を配置する言語モデルの能力を組み合わせた,トップk次トークンの予測手法を提案する。
我々のモデルは,文字レベルの入力表現とトークン出力を混合し,語彙外トークン(OOV)を有意に表現し,予測遅延を最小化する。
論文 参考訳(メタデータ) (2020-04-10T22:40:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。