論文の概要: Moving object detection for visual odometry in a dynamic environment
based on occlusion accumulation
- arxiv url: http://arxiv.org/abs/2009.08746v1
- Date: Fri, 18 Sep 2020 11:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 03:35:03.725792
- Title: Moving object detection for visual odometry in a dynamic environment
based on occlusion accumulation
- Title(参考訳): 咬合蓄積に基づく動的環境における視覚オドメトリーのための移動物体検出
- Authors: Haram Kim, Pyojin Kim, H. Jin Kim
- Abstract要約: RGB-D画像を用いた移動物体検出アルゴリズムを提案する。
提案アルゴリズムは,背景モデルの推定を必要としない。
二乗回帰重みを持つVO法として高密度視覚計測(DVO)を用いる。
- 参考スコア(独自算出の注目度): 31.143322364794894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detection of moving objects is an essential capability in dealing with
dynamic environments. Most moving object detection algorithms have been
designed for color images without depth. For robotic navigation where real-time
RGB-D data is often readily available, utilization of the depth information
would be beneficial for obstacle recognition.
Here, we propose a simple moving object detection algorithm that uses RGB-D
images. The proposed algorithm does not require estimating a background model.
Instead, it uses an occlusion model which enables us to estimate the camera
pose on a background confused with moving objects that dominate the scene. The
proposed algorithm allows to separate the moving object detection and visual
odometry (VO) so that an arbitrary robust VO method can be employed in a
dynamic situation with a combination of moving object detection, whereas other
VO algorithms for a dynamic environment are inseparable. In this paper, we use
dense visual odometry (DVO) as a VO method with a bi-square regression weight.
Experimental results show the segmentation accuracy and the performance
improvement of DVO in the situations. We validate our algorithm in public
datasets and our dataset which also publicly accessible.
- Abstract(参考訳): 移動物体の検出は、動的環境を扱う上で必須の能力である。
ほとんどの移動物体検出アルゴリズムは深度のないカラー画像のために設計されている。
リアルタイムのRGB-Dデータが容易に利用できるロボットナビゲーションでは、深度情報の利用は障害物認識に有用である。
本稿では,RGB-D画像を用いたシンプルな移動物体検出アルゴリズムを提案する。
提案アルゴリズムは,背景モデルの推定を必要としない。
代わりに、オクルージョンモデルを使用して、シーンを支配する動くオブジェクトと混同された背景のカメラのポーズを推定します。
提案手法では、移動物体検出と視覚オドメトリ(vo)を分離し、移動物体検出と組み合わせた動的状況において任意のロバストなvo法を用いることができるが、動的環境における他のvoアルゴリズムは分離できない。
本稿では,二乗回帰重み付きVO法として高密度ビジュアルオドメトリー(DVO)を用いる。
実験結果から,DVOのセグメンテーション精度と性能改善が示された。
我々は,我々のアルゴリズムを公開データセットおよび公開アクセス可能なデータセットで検証する。
関連論文リスト
- MV-ROPE: Multi-view Constraints for Robust Category-level Object Pose and Size Estimation [23.615122326731115]
本稿では,RGBビデオストリームを利用した新しいソリューションを提案する。
本フレームワークは,スケール対応単分子高密度SLAMソリューション,軽量オブジェクトポーズ予測器,オブジェクトレベルのポーズグラフの3つのモジュールから構成される。
提案手法は,高精細度情報を用いた公開データセットを用いた場合,最先端のRGB-D手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2023-08-17T08:29:54Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - Adaptive Multi-source Predictor for Zero-shot Video Object Segmentation [68.56443382421878]
ゼロショットビデオオブジェクトセグメンテーション(ZVOS)のための新しい適応型マルチソース予測器を提案する。
静的オブジェクト予測器では、RGBソースは、同時に深度および静注ソースに変換される。
実験の結果,提案モデルは3つのZVOSベンチマークにおいて最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-18T10:19:29Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
暗黒環境下でのオブジェクト検出を強化するために,新しいマルチタスク自動符号化変換(MAET)モデルを提案する。
自己超越的な方法で、MAETは、現実的な照明劣化変換を符号化して復号することで、本質的な視覚構造を学習する。
我々は,合成および実世界のデータセットを用いて最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2022-05-06T16:27:14Z) - Visual Odometry for RGB-D Cameras [3.655021726150368]
本稿では,静止環境を走行する移動RGB-Dカメラの高速かつ高精度な計測手法を開発した。
提案アルゴリズムは,SURF を特徴抽出器として,RANSAC を用いて結果をフィルタリングし,最小平均角を使って連続するビデオフレーム間の6つのパラメータの剛性変換を推定する。
論文 参考訳(メタデータ) (2022-03-28T21:49:12Z) - Space Non-cooperative Object Active Tracking with Deep Reinforcement
Learning [1.212848031108815]
DRLAVTと命名されたDQNアルゴリズムに基づくエンドツーエンドのアクティブなトラッキング手法を提案する。
追尾宇宙船のアプローチを、色やRGBD画像にのみ依存した任意の空間の非協力目標に導くことができる。
位置ベースのビジュアルサーボベースラインアルゴリズムでは、最先端の2DモノクロトラッカーであるSiamRPNをはるかに上回っている。
論文 参考訳(メタデータ) (2021-12-18T06:12:24Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
時間情報と空間情報のより効果的な融合のための新しい動的時空間ネットワーク(DSNet)を提案する。
提案手法は最先端アルゴリズムよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-09T06:42:30Z) - Object Detection in the Context of Mobile Augmented Reality [16.49070406578342]
本稿では,VIOから得られる幾何学的情報とオブジェクト検出器からの意味情報を組み合わせて,モバイルデバイス上での物体検出性能を向上させる手法を提案する。
提案手法は,(1)画像配向補正法,(2)スケールベースフィルタリング法,(3)オンライン意味地図の3つの構成要素を含む。
その結果,汎用物体検出器の精度をデータセット上で12%向上できることがわかった。
論文 参考訳(メタデータ) (2020-08-15T05:15:00Z) - Object-oriented SLAM using Quadrics and Symmetry Properties for Indoor
Environments [11.069661312755034]
本稿ではRGB-Dカメラを用いたスパースオブジェクトレベルのSLAMアルゴリズムを提案する。
二次表現は、その位置、向き、占有空間を含むオブジェクトをコンパクトにモデル化するランドマークとして用いられる。
実験の結果,特に移動ロボットの前方軌道における最先端のアルゴリズムと比較して,提案アルゴリズムは2次再構成の精度と収束速度を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2020-04-11T04:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。