論文の概要: Probably Approximately Correct Explanations of Machine Learning Models
via Syntax-Guided Synthesis
- arxiv url: http://arxiv.org/abs/2009.08770v1
- Date: Fri, 18 Sep 2020 12:10:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 02:57:37.257095
- Title: Probably Approximately Correct Explanations of Machine Learning Models
via Syntax-Guided Synthesis
- Title(参考訳): 構文誘導合成による機械学習モデルのほぼ正確な説明
- Authors: Daniel Neider and Bishwamittra Ghosh
- Abstract要約: 本稿では、おそらくほぼ正解学習(PAC)と構文誘導合成(SyGuS)という論理推論手法を組み合わせて、複雑な機械学習モデル(ディープニューラルネットワークなど)の意思決定を理解するための新しいアプローチを提案する。
提案手法は,高い確率で誤りが少ないことを証明し,人間の解釈可能な小さな説明を生成するのに有効であることを実証的に示す。
- 参考スコア(独自算出の注目度): 6.624726878647541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel approach to understanding the decision making of complex
machine learning models (e.g., deep neural networks) using a combination of
probably approximately correct learning (PAC) and a logic inference methodology
called syntax-guided synthesis (SyGuS). We prove that our framework produces
explanations that with a high probability make only few errors and show
empirically that it is effective in generating small, human-interpretable
explanations.
- Abstract(参考訳): 本稿では、おそらくほぼ正解学習(PAC)と構文誘導合成(SyGuS)という論理推論手法を組み合わせて、複雑な機械学習モデル(ディープニューラルネットワークなど)の意思決定を理解するための新しいアプローチを提案する。
我々のフレームワークは、高い確率でわずかな誤差しか生じず、小さな人間の解釈可能な説明を生成するのに効果的であることを実証する。
関連論文リスト
- Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
畳み込みニューラルネットワーク(CNN)の忠実かつ解釈可能な説明に階層的セグメンテーション技術を用いるフレームワークを導入する。
本手法はモデルの推論忠実性を維持するモデルに基づく階層的セグメンテーションを構築する。
実験により、我々のフレームワークであるxAiTreesが高度に解釈可能で忠実なモデル説明を提供することが示された。
論文 参考訳(メタデータ) (2024-06-19T06:45:19Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Learning with Explanation Constraints [91.23736536228485]
我々は、説明がモデルの学習をどのように改善するかを分析するための学習理論フレームワークを提供する。
我々は,多数の合成および実世界の実験に対して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T15:06:47Z) - Understanding Post-hoc Explainers: The Case of Anchors [6.681943980068051]
本稿では,テキストの判断を説明するために,少数の単語群をハイライトする規則に基づく解釈可能性法の理論解析を行う。
アルゴリズムを定式化し有用な洞察を提供した後、数学的にアンカーが有意義な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2023-03-15T17:56:34Z) - Explanations from Large Language Models Make Small Reasoners Better [61.991772773700006]
提案手法は, 異なる設定において, 微調整ベースラインを連続的に, 著しく向上させることができることを示す。
副次的な利点として、人間の評価は、その予測を正当化するために高品質な説明を生成することができることを示す。
論文 参考訳(メタデータ) (2022-10-13T04:50:02Z) - Learning outside the Black-Box: The pursuit of interpretable models [78.32475359554395]
本稿では,任意の連続ブラックボックス関数の連続的大域的解釈を生成するアルゴリズムを提案する。
我々の解釈は、その芸術の以前の状態から飛躍的な進歩を表している。
論文 参考訳(メタデータ) (2020-11-17T12:39:44Z) - Towards Analogy-Based Explanations in Machine Learning [3.1410342959104725]
類推的推論は解釈可能性や説明可能性の観点からはそれほど面白くないと我々は主張する。
アナログベースのアプローチは、説明可能なAIと解釈可能な機械学習という領域における既存のアプローチの代替として実現可能なものだ。
論文 参考訳(メタデータ) (2020-05-23T06:41:35Z) - Ontology-based Interpretable Machine Learning for Textual Data [35.01650633374998]
本稿では,予測モデルを説明するためのサンプリング手法に基づいて,解釈可能なモデルを学習する新しい解釈フレームワークを提案する。
説明のために探索空間を狭めるために,学習可能なアンカーアルゴリズムを設計する。
さらに、学習された解釈可能な表現とアンカーを組み合わせることで、理解可能な説明を生成する一連の規則が導入された。
論文 参考訳(メタデータ) (2020-04-01T02:51:57Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。