論文の概要: Multi-Objective Parameter-less Population Pyramid for Solving Industrial
Process Planning Problems
- arxiv url: http://arxiv.org/abs/2009.08929v1
- Date: Thu, 10 Sep 2020 09:40:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 03:00:46.534456
- Title: Multi-Objective Parameter-less Population Pyramid for Solving Industrial
Process Planning Problems
- Title(参考訳): 産業プロセス計画問題の解決のための多目的パラメータレス人口ピラミッド
- Authors: Michal Witold Przewozniczek, Piotr Dziurzanski, Shuai Zhao, Leandro
Soares Indrusiak
- Abstract要約: 進化的手法は、難しい実践的な問題を解決する際に、高品質な結果を得るために有効なツールである。
学習を採用する最先端の方法の1つは、そのことだ。
無人口ピラミッド(P3)
近年の研究では、P3はいわゆる重複ブロックの問題に対処する上で非常に競争力が高いことが示されている。
- 参考スコア(独自算出の注目度): 3.4389143174241315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evolutionary methods are effective tools for obtaining high-quality results
when solving hard practical problems. Linkage learning may increase their
effectiveness. One of the state-of-the-art methods that employ linkage learning
is the Parameter-less Population Pyramid (P3). P3 is dedicated to solving
single-objective problems in discrete domains. Recent research shows that P3 is
highly competitive when addressing problems with so-called overlapping blocks,
which are typical for practical problems. In this paper, we consider a
multi-objective industrial process planning problem that arises from practice
and is NP-hard. To handle it, we propose a multi-objective version of P3. The
extensive research shows that our proposition outperforms the competing methods
for the considered practical problem and typical multi-objective benchmarks.
- Abstract(参考訳): 進化的手法は、難しい実践的な問題を解決する際に高品質な結果を得るために有効なツールである。
リンク学習は効果を高める可能性がある。
リンク学習を用いた最先端手法の1つはパラメータレス人口ピラミッド(P3)である。
P3は離散領域における単目的問題の解法に特化している。
近年の研究では、P3はいわゆる重複ブロックの問題に対処する上で非常に競争力が高いことが示されている。
本稿では,実践から生まれ,NPハードである多目的産業プロセス計画問題について考察する。
そこで我々は,p3の多目的バージョンを提案する。
広範な研究により,本提案手法は実用的問題と典型的な多目的ベンチマークの競合手法よりも優れていることが示された。
関連論文リスト
- MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics [8.90237460752114]
このトピックは、マルチタスク学習(multitask learning)と呼ばれる、シングルまたはPDE問題の集合を解決するための、幅広いメソッドとモデルを含んでいる。
PIMLは、PDE問題を解決する際に、大規模なデータの代わりに機械学習モデルのトレーニングプロセスに物理法則を組み込むことによって特徴付けられる。
論文 参考訳(メタデータ) (2024-02-16T23:21:40Z) - Combinatorial Optimization with Policy Adaptation using Latent Space Search [44.12073954093942]
本稿では,複雑なNPハード問題を解くために,パフォーマンスアルゴリズムを設計するための新しいアプローチを提案する。
我々の検索戦略は11の標準ベンチマークタスクにおける最先端のアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-13T12:24:54Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Three-Way Trade-Off in Multi-Objective Learning: Optimization,
Generalization and Conflict-Avoidance [47.42067405054353]
MOL(Multi-objective Learning)は、機械学習の新興問題においてしばしば発生する問題である。
MOLにおける重要な課題の1つは、反復最適化プロセスにおける異なる目的間の潜在的な衝突である。
近年,MGDAやその変種など,MOLの動的重み付けアルゴリズムが開発されている。
論文 参考訳(メタデータ) (2023-05-31T17:31:56Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
目的の選好から最適な政策を学習する単一政策 MORL の問題について検討する。
既存の方法は、多目的決定プロセスの正確な知識のような強い仮定を必要とする。
モデルベースエンベロップ値 (EVI) と呼ばれる新しいアルゴリズムを提案し, 包含された多目的$Q$学習アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2020-11-19T22:35:31Z) - Efficient Continuous Pareto Exploration in Multi-Task Learning [34.41682709915956]
本稿では,機械学習問題における最適解の連続解析手法を提案する。
サンプルベーススパース線形システムを提案することにより、現代の機械学習問題に対する多目的最適化の理論結果をスケールアップする。
論文 参考訳(メタデータ) (2020-06-29T23:36:20Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
本稿では,オンライン分散ロバスト最適化(DRO)のクラスを解決するための実用的なオンライン手法を提案する。
本研究は,ネットワークの堅牢性向上のための機械学習における重要な応用を実証する。
論文 参考訳(メタデータ) (2020-06-17T20:19:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。