論文の概要: COMET: A Neural Framework for MT Evaluation
- arxiv url: http://arxiv.org/abs/2009.09025v2
- Date: Mon, 19 Oct 2020 14:10:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-17 02:59:26.240002
- Title: COMET: A Neural Framework for MT Evaluation
- Title(参考訳): COMET: MT評価のためのニューラルネットワークフレームワーク
- Authors: Ricardo Rei, Craig Stewart, Ana C Farinha, Alon Lavie
- Abstract要約: COMETは多言語機械翻訳評価モデルのトレーニングのためのニューラルネットワークフレームワークである。
本フレームワークは、MT品質をより正確に予測するために、ソース入力とターゲット言語参照変換の両方からの情報を利用する。
我々のモデルは、WMT 2019 Metricsの共有タスクにおいて、新しい最先端のパフォーマンスを実現し、ハイパフォーマンスシステムに対する堅牢性を実証する。
- 参考スコア(独自算出の注目度): 8.736370689844682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present COMET, a neural framework for training multilingual machine
translation evaluation models which obtains new state-of-the-art levels of
correlation with human judgements. Our framework leverages recent breakthroughs
in cross-lingual pretrained language modeling resulting in highly multilingual
and adaptable MT evaluation models that exploit information from both the
source input and a target-language reference translation in order to more
accurately predict MT quality. To showcase our framework, we train three models
with different types of human judgements: Direct Assessments, Human-mediated
Translation Edit Rate and Multidimensional Quality Metrics. Our models achieve
new state-of-the-art performance on the WMT 2019 Metrics shared task and
demonstrate robustness to high-performing systems.
- Abstract(参考訳): COMETは多言語機械翻訳評価モデルをトレーニングするためのニューラルネットワークフレームワークであり,人間の判断と新たな最先端の相関関係を得る。
我々のフレームワークは,言語間事前学習言語モデリングの最近の進歩を活用し,多言語・適応可能なMT評価モデルを作成し,MT品質をより正確に予測するために,ソース入力とターゲット言語参照翻訳の両方からの情報を活用する。
枠組みを紹介するために,我々は,人的評価,人間による翻訳編集率,多次元品質メトリクスの3つのモデルについて,異なるタイプの人的判断で訓練する。
我々のモデルは、WMT 2019 Metricsの共有タスクにおいて、新しい最先端のパフォーマンスを実現し、ハイパフォーマンスシステムに対する堅牢性を示す。
関連論文リスト
- Towards Zero-Shot Multimodal Machine Translation [64.9141931372384]
本稿では,マルチモーダル機械翻訳システムの学習において,完全教師付きデータの必要性を回避する手法を提案する。
我々の手法はZeroMMTと呼ばれ、2つの目的の混合で学習することで、強いテキストのみの機械翻訳(MT)モデルを適応させることである。
本手法が完全に教師付きトレーニングデータを持たない言語に一般化されることを証明するため,CoMMuTE評価データセットをアラビア語,ロシア語,中国語の3言語に拡張した。
論文 参考訳(メタデータ) (2024-07-18T15:20:31Z) - Revisiting Machine Translation for Cross-lingual Classification [91.43729067874503]
この分野のほとんどの研究は、機械翻訳コンポーネントではなく多言語モデルに焦点を当てている。
より強力なMTシステムを用いて、原文のトレーニングと機械翻訳テキストの推論のミスマッチを緩和することにより、翻訳テストは以前想定していたよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:56:10Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Exploiting Multilingualism in Low-resource Neural Machine Translation
via Adversarial Learning [3.2258463207097017]
Generative Adversarial Networks (GAN) はニューラルマシン翻訳(NMT)に有望なアプローチを提供する
GANでは、バイリンガルモデルと同様に、マルチリンガルNTTはモデルトレーニング中に各文の参照翻訳を1つだけ考慮している。
本稿では,DAASI(Denoising Adversarial Auto-Encoder-based Sentence Interpolation)アプローチによる文計算を提案する。
論文 参考訳(メタデータ) (2023-03-31T12:34:14Z) - Evaluating and Improving the Coreference Capabilities of Machine
Translation Models [30.60934078720647]
機械翻訳は幅広い言語能力を必要とする。
現在のエンドツーエンドモデルは、バイリンガルコーパスで一致した文を観察することで暗黙的に学習することが期待されている。
論文 参考訳(メタデータ) (2023-02-16T18:16:09Z) - Pre-training Data Quality and Quantity for a Low-Resource Language: New
Corpus and BERT Models for Maltese [4.4681678689625715]
低リソース言語に対するモノリンガルデータによる事前学習の効果を分析する。
新たに作成したマルタ語コーパスを提示し、事前学習データサイズとドメインが下流のパフォーマンスに与える影響を判定する。
スクラッチからトレーニングされた単言語BERTモデル(BERTu)と、さらに事前訓練された多言語BERT(mBERTu)の2つのモデルを比較する。
論文 参考訳(メタデータ) (2022-05-21T06:44:59Z) - Data Selection Curriculum for Neural Machine Translation [31.55953464971441]
NMTモデルのための2段階のカリキュラムトレーニングフレームワークを提案する。
我々は、事前学習法とオンラインスコアを用いた決定論的スコアリングの両方によって選択されたデータのサブセットに基づいてベースNMTモデルを微調整する。
我々のカリキュラム戦略は、常により良い品質(+2.2BLEUの改善)とより高速な収束を示すことを示した。
論文 参考訳(メタデータ) (2022-03-25T19:08:30Z) - Language Modeling, Lexical Translation, Reordering: The Training Process
of NMT through the Lens of Classical SMT [64.1841519527504]
ニューラルマシン翻訳は、翻訳プロセス全体をモデル化するために、単一のニューラルネットワークを使用する。
ニューラルネットワーク翻訳はデファクトスタンダードであるにもかかわらず、NMTモデルがトレーニングの過程でどのように異なる能力を獲得するのかは、まだ明らかになっていない。
論文 参考訳(メタデータ) (2021-09-03T09:38:50Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
文書レベルの機械翻訳は、文間の依存関係をソース文の翻訳に組み込む。
本稿では,ニューラルマシン翻訳(NMT)を訓練し,文のターゲット翻訳と周辺文の双方を予測することによって,文間の依存関係をモデル化するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T03:38:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。