Adversarial Exposure Attack on Diabetic Retinopathy Imagery Grading
- URL: http://arxiv.org/abs/2009.09231v2
- Date: Thu, 17 Oct 2024 13:30:22 GMT
- Title: Adversarial Exposure Attack on Diabetic Retinopathy Imagery Grading
- Authors: Yupeng Cheng, Qing Guo, Felix Juefei-Xu, Huazhu Fu, Shang-Wei Lin, Weisi Lin,
- Abstract summary: Diabetic Retinopathy (DR) is a leading cause of vision loss around the world.
To help diagnose it, numerous cutting-edge works have built powerful deep neural networks (DNNs) to automatically grade DR via retinal fundus images (RFIs)
RFIs are commonly affected by camera exposure issues that may lead to incorrect grades.
In this paper, we study this problem from the viewpoint of adversarial attacks.
- Score: 75.73437831338907
- License:
- Abstract: Diabetic Retinopathy (DR) is a leading cause of vision loss around the world. To help diagnose it, numerous cutting-edge works have built powerful deep neural networks (DNNs) to automatically grade DR via retinal fundus images (RFIs). However, RFIs are commonly affected by camera exposure issues that may lead to incorrect grades. The mis-graded results can potentially pose high risks to an aggravation of the condition. In this paper, we study this problem from the viewpoint of adversarial attacks. We identify and introduce a novel solution to an entirely new task, termed as adversarial exposure attack, which is able to produce natural exposure images and mislead the state-of-the-art DNNs. We validate our proposed method on a real-world public DR dataset with three DNNs, e.g., ResNet50, MobileNet, and EfficientNet, demonstrating that our method achieves high image quality and success rate in transferring the attacks. Our method reveals the potential threats to DNN-based automatic DR grading and would benefit the development of exposure-robust DR grading methods in the future.
Related papers
- OpticalDR: A Deep Optical Imaging Model for Privacy-Protective
Depression Recognition [66.91236298878383]
Depression Recognition (DR) poses a considerable challenge, especially in the context of privacy concerns.
We design a new imaging system to erase the identity information of captured facial images while retain disease-relevant features.
It is irreversible for identity information recovery while preserving essential disease-related characteristics necessary for accurate DR.
arXiv Detail & Related papers (2024-02-29T01:20:29Z) - Adversarial alignment: Breaking the trade-off between the strength of an
attack and its relevance to human perception [10.883174135300418]
Adversarial attacks have long been considered the "Achilles' heel" of deep learning.
Here, we investigate how the robustness of DNNs to adversarial attacks has evolved as their accuracy on ImageNet has continued to improve.
arXiv Detail & Related papers (2023-06-05T20:26:17Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - Towards Understanding and Boosting Adversarial Transferability from a
Distribution Perspective [80.02256726279451]
adversarial attacks against Deep neural networks (DNNs) have received broad attention in recent years.
We propose a novel method that crafts adversarial examples by manipulating the distribution of the image.
Our method can significantly improve the transferability of the crafted attacks and achieves state-of-the-art performance in both untargeted and targeted scenarios.
arXiv Detail & Related papers (2022-10-09T09:58:51Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
Brain vasculature dysfunctions such as stalled blood flow in cerebral capillaries are associated with cognitive decline and pathogenesis in Alzheimer's disease.
Here, we describe a deep learning-based approach for automatic detection of stalled capillaries in brain images based on 3D convolutional neural networks.
In this setting, our approach outperformed other methods and demonstrated state-of-the-art results, achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3% specificity.
arXiv Detail & Related papers (2021-04-04T20:30:14Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Adversarial Robustness Study of Convolutional Neural Network for Lumbar
Disk Shape Reconstruction from MR images [1.2809525640002362]
In this study, we investigated the in-distribution (IND) and out-of-distribution (OOD) adversarial robustness of a representative CNN for lumbar disk shape reconstruction from spine MR images.
The results show that IND adversarial training can improve the CNN robustness to IND adversarial attacks, and larger training datasets may lead to higher IND robustness.
arXiv Detail & Related papers (2021-02-04T20:57:49Z) - Bias Field Poses a Threat to DNN-based X-Ray Recognition [21.317001512826476]
bias field caused by the improper medical image acquisition process widely exists in the chest X-ray images.
In this paper, we study this problem based on the recent adversarial attack and propose a brand new attack.
Our method reveals the potential threat to the DNN-based X-ray automated diagnosis and can definitely benefit the development of bias-field-robust automated diagnosis system.
arXiv Detail & Related papers (2020-09-19T14:58:02Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Adversarial Attacks on Convolutional Neural Networks in Facial
Recognition Domain [2.4704085162861693]
Adversarial attacks that render Deep Neural Network (DNN) classifiers vulnerable in real life represent a serious threat in autonomous vehicles, malware filters, or biometric authentication systems.
We apply Fast Gradient Sign Method to introduce perturbations to a facial image dataset and then test the output on a different classifier.
We craft a variety of different black-box attack algorithms on a facial image dataset assuming minimal adversarial knowledge.
arXiv Detail & Related papers (2020-01-30T00:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.