3D Convolutional Neural Networks for Stalled Brain Capillary Detection
- URL: http://arxiv.org/abs/2104.01687v1
- Date: Sun, 4 Apr 2021 20:30:14 GMT
- Title: 3D Convolutional Neural Networks for Stalled Brain Capillary Detection
- Authors: Roman Solovyev, Alexandr A. Kalinin, Tatiana Gabruseva
- Abstract summary: Brain vasculature dysfunctions such as stalled blood flow in cerebral capillaries are associated with cognitive decline and pathogenesis in Alzheimer's disease.
Here, we describe a deep learning-based approach for automatic detection of stalled capillaries in brain images based on 3D convolutional neural networks.
In this setting, our approach outperformed other methods and demonstrated state-of-the-art results, achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3% specificity.
- Score: 72.21315180830733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adequate blood supply is critical for normal brain function. Brain
vasculature dysfunctions such as stalled blood flow in cerebral capillaries are
associated with cognitive decline and pathogenesis in Alzheimer's disease.
Recent advances in imaging technology enabled generation of high-quality 3D
images that can be used to visualize stalled blood vessels. However,
localization of stalled vessels in 3D images is often required as the first
step for downstream analysis, which can be tedious, time-consuming and
error-prone, when done manually. Here, we describe a deep learning-based
approach for automatic detection of stalled capillaries in brain images based
on 3D convolutional neural networks. Our networks employed custom 3D data
augmentations and were used weight transfer from pre-trained 2D models for
initialization. We used an ensemble of several 3D models to produce the winning
submission to the Clog Loss: Advance Alzheimer's Research with Stall Catchers
machine learning competition that challenged the participants with classifying
blood vessels in 3D image stacks as stalled or flowing. In this setting, our
approach outperformed other methods and demonstrated state-of-the-art results,
achieving 0.85 Matthews correlation coefficient, 85% sensitivity, and 99.3%
specificity. The source code for our solution is made publicly available.
Related papers
- Domain Aware Multi-Task Pretraining of 3D Swin Transformer for T1-weighted Brain MRI [4.453300553789746]
We propose novel domain-aware multi-task learning tasks to pretrain a 3D Swin Transformer for brain magnetic resonance imaging (MRI)
Our method considers the domain knowledge in brain MRI by incorporating brain anatomy and morphology as well as standard pretext tasks adapted for 3D imaging in a contrastive learning setting.
Our method outperforms existing supervised and self-supervised methods in three downstream tasks of Alzheimer's disease classification, Parkinson's disease classification, and age prediction tasks.
arXiv Detail & Related papers (2024-10-01T05:21:02Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Simulation-Based Segmentation of Blood Vessels in Cerebral 3D OCTA
Images [4.945556328362821]
We propose utilizing synthetic data to supervise segmentation algorithms.
We transform patches from vessel graphs into synthetic cerebral 3D OCTA images paired with their matching ground truth labels.
In extensive experiments, we demonstrate that our approach achieves competitive results.
arXiv Detail & Related papers (2024-03-11T19:14:51Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
integration of Neural Radiance Fields (NeRFs) and generative models, such as Generative Adversarial Networks (GANs) has transformed 3D-aware generation from single-view images.
We propose a simple and effective method, based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned convolutional network to directly generate 3D-consistent images corresponding to the underlying 3D representations.
arXiv Detail & Related papers (2023-03-22T18:59:48Z) - Improving 3D Imaging with Pre-Trained Perpendicular 2D Diffusion Models [52.529394863331326]
We propose a novel approach using two perpendicular pre-trained 2D diffusion models to solve the 3D inverse problem.
Our method is highly effective for 3D medical image reconstruction tasks, including MRI Z-axis super-resolution, compressed sensing MRI, and sparse-view CT.
arXiv Detail & Related papers (2023-03-15T08:28:06Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
We propose to process the 3D data by a 2+1D framework so that we can exploit the powerful deep 2D Convolutional Neural Network (CNN) networks pre-trained on the huge ImageNet dataset for 3D neuroimaging recognition.
Specifically, 3D volumes of Magnetic Resonance Imaging (MRI) metrics are decomposed to 2D slices according to neighboring voxel positions.
Global pooling is applied to remove redundant information as the activation patterns are sparsely distributed over feature maps.
Channel-wise and slice-wise convolutions are proposed to aggregate the contextual information in the third dimension unprocessed by the 2D CNN model.
arXiv Detail & Related papers (2022-11-21T15:22:59Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - Predi\c{c}\~ao da Idade Cerebral a partir de Imagens de Resson\^ancia
Magn\'etica utilizando Redes Neurais Convolucionais [57.52103125083341]
Deep learning techniques for brain age prediction from magnetic resonance images are investigated.
The identification of biomarkers is useful for detecting an early-stage neurodegenerative process, as well as for predicting age-related or non-age-related cognitive decline.
The best result was obtained by the 2D model, which achieved a mean absolute error of 3.83 years.
arXiv Detail & Related papers (2021-12-23T14:51:45Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - 3D Self-Supervised Methods for Medical Imaging [7.65168530693281]
We propose 3D versions for five different self-supervised methods, in the form of proxy tasks.
Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation.
The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks.
arXiv Detail & Related papers (2020-06-06T09:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.