論文の概要: Out-Of-Bag Anomaly Detection
- arxiv url: http://arxiv.org/abs/2009.09358v1
- Date: Sun, 20 Sep 2020 06:01:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 12:33:30.915148
- Title: Out-Of-Bag Anomaly Detection
- Title(参考訳): バッグ外異常検出
- Authors: Egor Klevak and Sangdi Lin and Andy Martin and Ondrej Linda and Eric
Ringger
- Abstract要約: データ異常は、実世界のデータセットでユビキタスであり、機械学習(ML)システムに悪影響を及ぼす可能性がある。
本稿では,新しいモデルに基づく異常検出手法を提案し,その手法をアウト・オブ・バグ検出と呼ぶ。
本手法は,家庭評価のケーススタディを通じて,データ前処理のステップとして,MLシステムの精度と信頼性を向上させることができることを示す。
- 参考スコア(独自算出の注目度): 0.9449650062296822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data anomalies are ubiquitous in real world datasets, and can have an adverse
impact on machine learning (ML) systems, such as automated home valuation.
Detecting anomalies could make ML applications more responsible and
trustworthy. However, the lack of labels for anomalies and the complex nature
of real-world datasets make anomaly detection a challenging unsupervised
learning problem. In this paper, we propose a novel model-based anomaly
detection method, that we call Out-of- Bag anomaly detection, which handles
multi-dimensional datasets consisting of numerical and categorical features.
The proposed method decomposes the unsupervised problem into the training of a
set of ensemble models. Out-of-Bag estimates are leveraged to derive an
effective measure for anomaly detection. We not only demonstrate the
state-of-the-art performance of our method through comprehensive experiments on
benchmark datasets, but also show our model can improve the accuracy and
reliability of an ML system as data pre-processing step via a case study on
home valuation.
- Abstract(参考訳): データ異常は、実世界のデータセットでユビキタスであり、自動住宅評価のような機械学習(ML)システムに悪影響を及ぼす可能性がある。
異常を検出することで、MLアプリケーションはより責任を持ち、信頼できるものになる。
しかし、異常ラベルの欠如と実世界のデータセットの複雑な性質により、異常検出は教師なし学習の問題となる。
本稿では,数値的特徴とカテゴリ的特徴からなる多次元データセットを扱う,袋外異常検出と呼ばれる新しいモデルに基づく異常検出法を提案する。
提案手法は教師なし問題をアンサンブルモデルのトレーニングに分解する。
バッグ外推定は、異常検出の効果的な尺度を導出するために利用される。
我々は,ベンチマークデータセットの包括的実験を通じて,本手法の最先端性能を示すだけでなく,住宅評価の事例スタディを通じて,mlシステムの精度と信頼性を向上させることができることを示す。
関連論文リスト
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Unsupervised Anomaly Detection via Nonlinear Manifold Learning [0.0]
異常は、残りのデータから著しく逸脱するサンプルであり、その検出は機械学習モデルを構築する上で大きな役割を果たす。
非線形多様体学習に基づく頑健で効率的かつ解釈可能な手法を導入し,教師なし設定における異常を検出する。
論文 参考訳(メタデータ) (2023-06-15T18:48:10Z) - WePaMaDM-Outlier Detection: Weighted Outlier Detection using Pattern
Approaches for Mass Data Mining [0.6754597324022876]
外乱検出は、システム障害、不正行為、およびデータ内のパターンに関する重要な情報を明らかにすることができる。
本稿では、異なる質量データマイニング領域を持つWePaMaDM-Outlier Detectionを提案する。
また, 監視, 故障検出, 傾向解析において, 異常検出技術におけるデータモデリングの重要性についても検討した。
論文 参考訳(メタデータ) (2023-06-09T07:00:00Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Multiple Instance Learning for Detecting Anomalies over Sequential
Real-World Datasets [2.427831679672374]
MIL(Multiple Instance Learning)は、トレーニングデータセットにおけるラベルの不完全な知識に関する問題に対して有効であることが示されている。
MILに基づく定式化と,異なる設計決定に基づいて,このフレームワークの様々なアルゴリズムのインスタンス化を提案する。
このフレームワークは、さまざまな現実世界のアプリケーションドメインから生じる多様なデータセットをうまく一般化する。
論文 参考訳(メタデータ) (2022-10-04T16:02:09Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。