MARS: Mixed Virtual and Real Wearable Sensors for Human Activity
Recognition with Multi-Domain Deep Learning Model
- URL: http://arxiv.org/abs/2009.09404v2
- Date: Fri, 9 Oct 2020 16:21:49 GMT
- Title: MARS: Mixed Virtual and Real Wearable Sensors for Human Activity
Recognition with Multi-Domain Deep Learning Model
- Authors: Ling Pei, Songpengcheng Xia, Lei Chu, Fanyi Xiao, Qi Wu, Wenxian Yu,
Robert Qiu
- Abstract summary: We propose to build a large database based on virtual IMUs and then address technical issues by introducing a multiple-domain deep learning framework consisting of three technical parts.
In the first part, we propose to learn the single-frame human activity from the noisy IMU data with hybrid convolutional neural networks (CNNs) in the semi-supervised form.
For the second part, the extracted data features are fused according to the principle of uncertainty-aware consistency.
The transfer learning is performed in the last part based on the newly released Archive of Motion Capture as Surface Shapes (AMASS) dataset.
- Score: 21.971345137218886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Together with the rapid development of the Internet of Things (IoT), human
activity recognition (HAR) using wearable Inertial Measurement Units (IMUs)
becomes a promising technology for many research areas. Recently, deep
learning-based methods pave a new way of understanding and performing analysis
of the complex data in the HAR system. However, the performance of these
methods is mostly based on the quality and quantity of the collected data. In
this paper, we innovatively propose to build a large database based on virtual
IMUs and then address technical issues by introducing a multiple-domain deep
learning framework consisting of three technical parts. In the first part, we
propose to learn the single-frame human activity from the noisy IMU data with
hybrid convolutional neural networks (CNNs) in the semi-supervised form. For
the second part, the extracted data features are fused according to the
principle of uncertainty-aware consistency, which reduces the uncertainty by
weighting the importance of the features. The transfer learning is performed in
the last part based on the newly released Archive of Motion Capture as Surface
Shapes (AMASS) dataset, containing abundant synthetic human poses, which
enhances the variety and diversity of the training dataset and is beneficial
for the process of training and feature transfer in the proposed method. The
efficiency and effectiveness of the proposed method have been demonstrated in
the real deep inertial poser (DIP) dataset. The experimental results show that
the proposed methods can surprisingly converge within a few iterations and
outperform all competing methods.
Related papers
- Sensor Data Augmentation from Skeleton Pose Sequences for Improving Human Activity Recognition [5.669438716143601]
Human Activity Recognition (HAR) has not fully capitalized on the proliferation of deep learning.
We propose a novel approach to improve wearable sensor-based HAR by introducing a pose-to-sensor network model.
Our contributions include the integration of simultaneous training, direct pose-to-sensor generation, and a comprehensive evaluation on the MM-Fit dataset.
arXiv Detail & Related papers (2024-04-25T10:13:18Z) - Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques [1.2328446298523066]
Hyperspectral imaging provides precise classification for land use and cover due to its exceptional spectral resolution.
However, the challenges of high dimensionality and limited spatial resolution hinder its effectiveness.
This study addresses these challenges by employing deep learning techniques to efficiently process, extract features, and classify data in an integrated manner.
arXiv Detail & Related papers (2024-03-03T15:47:43Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - A Deep Learning Method for Complex Human Activity Recognition Using
Virtual Wearable Sensors [22.923108537119685]
Sensor-based human activity recognition (HAR) is now a research hotspot in multiple application areas.
We propose a novel method based on deep learning for complex HAR in the real-scene.
The proposed method can surprisingly converge in a few iterations and achieve an accuracy of 91.15% on a real IMU dataset.
arXiv Detail & Related papers (2020-03-04T03:31:23Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.