Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques
- URL: http://arxiv.org/abs/2403.01546v1
- Date: Sun, 3 Mar 2024 15:47:43 GMT
- Title: Hyperspectral Image Analysis in Single-Modal and Multimodal setting
using Deep Learning Techniques
- Authors: Shivam Pande
- Abstract summary: Hyperspectral imaging provides precise classification for land use and cover due to its exceptional spectral resolution.
However, the challenges of high dimensionality and limited spatial resolution hinder its effectiveness.
This study addresses these challenges by employing deep learning techniques to efficiently process, extract features, and classify data in an integrated manner.
- Score: 1.2328446298523066
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hyperspectral imaging provides precise classification for land use and cover
due to its exceptional spectral resolution. However, the challenges of high
dimensionality and limited spatial resolution hinder its effectiveness. This
study addresses these challenges by employing deep learning techniques to
efficiently process, extract features, and classify data in an integrated
manner. To enhance spatial resolution, we integrate information from
complementary modalities such as LiDAR and SAR data through multimodal
learning. Moreover, adversarial learning and knowledge distillation are
utilized to overcome issues stemming from domain disparities and missing
modalities. We also tailor deep learning architectures to suit the unique
characteristics of HSI data, utilizing 1D convolutional and recurrent neural
networks to handle its continuous spectral dimension. Techniques like visual
attention and feedback connections within the architecture bolster the
robustness of feature extraction. Additionally, we tackle the issue of limited
training samples through self-supervised learning methods, employing
autoencoders for dimensionality reduction and exploring semi-supervised
learning techniques that leverage unlabeled data. Our proposed approaches are
evaluated across various HSI datasets, consistently outperforming existing
state-of-the-art techniques.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - A Dimensional Structure based Knowledge Distillation Method for
Cross-Modal Learning [15.544134849816528]
We discover the correlation between feature discriminability and dimensional structure (DS) by analyzing and observing features extracted from simple and hard tasks.
We propose a novel cross-modal knowledge distillation (CMKD) method for better supervised cross-modal learning (CML) performance.
The proposed method enforces output features to be channel-wise independent and intermediate ones to be uniformly distributed, thereby learning semantically irrelevant features from the hard task to boost its accuracy.
arXiv Detail & Related papers (2023-06-28T07:29:26Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - A deep learning approach to clustering visual arts [7.363576598794859]
We propose DELIUS: a DEep learning approach to cLustering vIsUal artS.
The method uses a pre-trained convolutional network to extract features and then feeds these features into a deep embedded clustering model.
The task of mapping the raw input data to a latent space is optimized jointly with the task of finding a set of cluster centroids in this latent space.
arXiv Detail & Related papers (2021-06-11T08:35:26Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - A Compact Deep Learning Model for Face Spoofing Detection [4.250231861415827]
presentation attack detection (PAD) has received significant attention from research communities.
We address the problem via fusing both wide and deep features in a unified neural architecture.
The procedure is done on different spoofing datasets such as ROSE-Youtu, SiW and NUAA Imposter.
arXiv Detail & Related papers (2021-01-12T21:20:09Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - MARS: Mixed Virtual and Real Wearable Sensors for Human Activity
Recognition with Multi-Domain Deep Learning Model [21.971345137218886]
We propose to build a large database based on virtual IMUs and then address technical issues by introducing a multiple-domain deep learning framework consisting of three technical parts.
In the first part, we propose to learn the single-frame human activity from the noisy IMU data with hybrid convolutional neural networks (CNNs) in the semi-supervised form.
For the second part, the extracted data features are fused according to the principle of uncertainty-aware consistency.
The transfer learning is performed in the last part based on the newly released Archive of Motion Capture as Surface Shapes (AMASS) dataset.
arXiv Detail & Related papers (2020-09-20T10:35:14Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.