Poincar\'{e} crystal on the one-dimensional lattice
- URL: http://arxiv.org/abs/2009.09441v1
- Date: Sun, 20 Sep 2020 14:44:42 GMT
- Title: Poincar\'{e} crystal on the one-dimensional lattice
- Authors: Pei Wang
- Abstract summary: We develop the quantum theory of particles with discrete Poincar'e symmetry on the one-dimensional Bravais lattice.
We find the conditions for the existence of representation, which are expressed as the congruence relation between quasi-momentum and quasi-energy.
During the propagation, the particles stay localized on a single or a few sites to preserve the Lorentz symmetry.
- Score: 8.25487382053784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop the quantum theory of particles that has discrete
Poincar\'{e} symmetry on the one-dimensional Bravais lattice. We review the
recently discovered discrete Lorentz symmetry, which is the unique Lorentz
symmetry that coexists with the discrete space translational symmetry on a
Bravais lattice. The discrete Lorentz transformations and spacetime
translations form the discrete Poincar\'{e} group, which are represented by
unitary operators in a quantum theory. We find the conditions for the existence
of representation, which are expressed as the congruence relation between
quasi-momentum and quasi-energy. We then build the Lorentz-invariant many-body
theory of indistinguishable particles by expressing both the unitary operators
and Floquet Hamiltonians in terms of the field operators. Some typical
Hamiltonians include the long-range hopping which fluctuates as the distance
between sites increases. We calculate the Green's functions of the lattice
theory. The spacetime points where the Green's function is nonzero display a
lattice structure. During the propagation, the particles stay localized on a
single or a few sites to preserve the Lorentz symmetry.
Related papers
- Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - $E=mc^2$ versus Symmetry for Lorentz Covariant Physics [0.0]
We argue against taking the Poincar'e symmetry as the fundamental symmetry behind relativistic' quantum dynamics.
The action of any position operator of a quantum state violates the on-shell mass condition.
arXiv Detail & Related papers (2023-05-16T06:49:16Z) - The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum
Mechanics [0.0]
This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence.
The focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics.
arXiv Detail & Related papers (2021-05-24T18:00:06Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with
Lorentz Covariance and $c \rightarrow \infty $ Limit [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
The key feature of the formulation is that it is not unitary but pseudo-unitary, exactly in the same sense as the Minkowski spacetime representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-09-12T23:48:52Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Covariant Quantum Mechanics and Quantum Spacetime [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-02-04T08:55:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.