$E=mc^2$ versus Symmetry for Lorentz Covariant Physics
- URL: http://arxiv.org/abs/2305.09697v1
- Date: Tue, 16 May 2023 06:49:16 GMT
- Title: $E=mc^2$ versus Symmetry for Lorentz Covariant Physics
- Authors: Otto C.W. Kong and Hock King Ting (Nat'l Central U, Taiwan)
- Abstract summary: We argue against taking the Poincar'e symmetry as the fundamental symmetry behind relativistic' quantum dynamics.
The action of any position operator of a quantum state violates the on-shell mass condition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The famous equation $E=mc^2$ is a version of particle mass being essentially
the magnitude of the (energy-)momentum four-vector in the setting of
`relativistic' dynamics, which can be seen as dictated by the Poincar\'e
symmetry adopted as the relativity symmetry. However, as Einstein himself
suggested, the naive notion of momentum as mass times velocity may not be
right. The Hamiltonian formulation perspective gives exactly such a setting
which in the case of motion of a charged particle under an electromagnetic
field actually has the right, canonical, momentum four-vector with an evolving
magnitude. The important simple result seems to have missed proper
appreciation. In relation to that, we present clear arguments against taking
the Poincar\'e symmetry as the fundamental symmetry behind `relativistic'
quantum dynamics, and discuss the proper symmetry theoretical formulation and
the necessary picture of the covariant Hamiltonian dynamics with an evolution
parameter that is, in general, not a particle proper time. In fact, it is
obvious that the action of any position operator of a quantum state violates
the on-shell mass condition. The phenomenologically quite successful quantum
field theories are `second quantized' versions of `relativistic' quantum
mechanics. We present a way for some reconciliation of that with our symmetry
picture and discuss implications.
Related papers
- Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Time and event symmetry in quantum mechanics [0.0]
We find that recent time symmetric interpretations of quantum mechanics fail to respect event symmetry.
We then use this model to resolve conceptual paradoxes with time symmetric quantum mechanics within an all-at-once', atemporal picture.
arXiv Detail & Related papers (2023-12-21T01:59:21Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Interpretation of Quantum Theory and Cosmology [0.0]
We reconsider the problem of the interpretation of the Quantum Theory (QT) in the perspective of the entire universe.
For the Universe we adopt a variance of the LambdaCDM model with Omega=1, one single inflaton with an Higgs type potential, the initial time at t=minus infinite.
arXiv Detail & Related papers (2023-04-14T12:32:30Z) - Quantum Origin of (Newtonian) Mass and Galilean Relativity Symmetry [0.0]
The Galilei group has been taken as the fundamental symmetry for 'nonrelativistic' physics, quantum or classical.
We present a sketch of the full picture here, emphasizing aspects that are different from the more familiar picture.
arXiv Detail & Related papers (2022-07-15T03:03:21Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Fully Symmetric Relativistic Quantum Mechanics and Its Physical
Implications [0.0]
A new formulation of relativistic quantum mechanics is presented and applied to a free, massive, and spin zero elementary particle in the Minkowski spacetime.
The reformulation requires that time and space, as well as the timelike and spacelike intervals, are treated equally, which makes the new theory fully symmetric and consistent with the Special Theory of Relativity.
arXiv Detail & Related papers (2021-05-31T19:13:19Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.