Learning Soft Labels via Meta Learning
- URL: http://arxiv.org/abs/2009.09496v1
- Date: Sun, 20 Sep 2020 18:42:13 GMT
- Title: Learning Soft Labels via Meta Learning
- Authors: Nidhi Vyas, Shreyas Saxena, Thomas Voice
- Abstract summary: One-hot labels do not represent soft decision boundaries among concepts, and hence, models trained on them are prone to overfitting.
We propose a framework, where we treat the labels as learnable parameters, and optimize them along with model parameters.
We show that learned labels capture semantic relationship between classes, and thereby improve teacher models for the downstream task of distillation.
- Score: 3.4852307714135375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-hot labels do not represent soft decision boundaries among concepts, and
hence, models trained on them are prone to overfitting. Using soft labels as
targets provide regularization, but different soft labels might be optimal at
different stages of optimization. Also, training with fixed labels in the
presence of noisy annotations leads to worse generalization. To address these
limitations, we propose a framework, where we treat the labels as learnable
parameters, and optimize them along with model parameters. The learned labels
continuously adapt themselves to the model's state, thereby providing dynamic
regularization. When applied to the task of supervised image-classification,
our method leads to consistent gains across different datasets and
architectures. For instance, dynamically learned labels improve ResNet18 by
2.1% on CIFAR100. When applied to dataset containing noisy labels, the learned
labels correct the annotation mistakes, and improves over state-of-the-art by a
significant margin. Finally, we show that learned labels capture semantic
relationship between classes, and thereby improve teacher models for the
downstream task of distillation.
Related papers
- Posterior Label Smoothing for Node Classification [2.737276507021477]
We propose a simple yet effective label smoothing for the transductive node classification task.
We design the soft label to encapsulate the local context of the target node through the neighborhood label distribution.
In the following analysis, we find that incorporating global label statistics in posterior computation is the key to the success of label smoothing.
arXiv Detail & Related papers (2024-06-01T11:59:49Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL) is a framework for the unification of learning with various imprecise label configurations.
We demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised learning, noisy label learning, and, more importantly, a mixture of these settings.
arXiv Detail & Related papers (2023-05-22T04:50:28Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
Multi-label recognition (MLR) with incomplete labels is very challenging.
Recent works strive to explore the image-to-label correspondence in the vision-language model, ie, CLIP, to compensate for insufficient annotations.
We advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior.
arXiv Detail & Related papers (2023-03-23T12:39:20Z) - Transductive CLIP with Class-Conditional Contrastive Learning [68.51078382124331]
We propose Transductive CLIP, a novel framework for learning a classification network with noisy labels from scratch.
A class-conditional contrastive learning mechanism is proposed to mitigate the reliance on pseudo labels.
ensemble labels is adopted as a pseudo label updating strategy to stabilize the training of deep neural networks with noisy labels.
arXiv Detail & Related papers (2022-06-13T14:04:57Z) - All Labels Are Not Created Equal: Enhancing Semi-supervision via Label
Grouping and Co-training [32.45488147013166]
Pseudo-labeling is a key component in semi-supervised learning (SSL)
We propose SemCo, a method which leverages label semantics and co-training to address this problem.
We show that our method achieves state-of-the-art performance across various SSL tasks including 5.6% accuracy improvement on Mini-ImageNet dataset with 1000 labeled examples.
arXiv Detail & Related papers (2021-04-12T07:33:16Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
We study how architecture affects learning with noisy labels.
We show that training with noisy labels can induce useful hidden representations, even when the model generalizes poorly.
This finding leads to a simple method to improve models trained on noisy labels.
arXiv Detail & Related papers (2020-12-23T18:58:05Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
We propose a self-attention based variational encoder-model to extract the label-label and label-feature dependencies jointly.
Our model can therefore be used to predict all labels in parallel while still including both label-label and label-feature dependencies.
arXiv Detail & Related papers (2020-12-03T05:41:44Z) - Learning to Purify Noisy Labels via Meta Soft Label Corrector [49.92310583232323]
Recent deep neural networks (DNNs) can easily overfit to biased training data with noisy labels.
Label correction strategy is commonly used to alleviate this issue.
We propose a meta-learning model which could estimate soft labels through meta-gradient descent step.
arXiv Detail & Related papers (2020-08-03T03:25:17Z) - Meta Soft Label Generation for Noisy Labels [0.0]
We propose a Meta Soft Label Generation algorithm called MSLG.
MSLG can jointly generate soft labels using meta-learning techniques.
Our approach outperforms other state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-07-11T19:37:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.