Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts
- URL: http://arxiv.org/abs/2009.09535v1
- Date: Sun, 20 Sep 2020 22:03:39 GMT
- Title: Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts
- Authors: Sehwan Kim, Qifan Song, and Faming Liang
- Abstract summary: We propose a class of adaptive gradient Markov chain Monte Carlo (SGMCMC) algorithms, where the drift function is biased to enhance escape from saddle points and the bias is adaptively adjusted according to the gradient of past samples.
We demonstrate via numerical examples that the proposed algorithms can significantly outperform the existing SGMCMC algorithms.
- Score: 8.36840154574354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian deep learning offers a principled way to address many issues
concerning safety of artificial intelligence (AI), such as model
uncertainty,model interpretability, and prediction bias. However, due to the
lack of efficient Monte Carlo algorithms for sampling from the posterior of
deep neural networks (DNNs), Bayesian deep learning has not yet powered our AI
system. We propose a class of adaptive stochastic gradient Markov chain Monte
Carlo (SGMCMC) algorithms, where the drift function is biased to enhance escape
from saddle points and the bias is adaptively adjusted according to the
gradient of past samples. We establish the convergence of the proposed
algorithms under mild conditions, and demonstrate via numerical examples that
the proposed algorithms can significantly outperform the existing SGMCMC
algorithms, such as stochastic gradient Langevin dynamics (SGLD), stochastic
gradient Hamiltonian Monte Carlo (SGHMC) and preconditioned SGLD, in both
simulation and optimization tasks.
Related papers
- Robust Approximate Sampling via Stochastic Gradient Barker Dynamics [0.0]
We introduce the Barker gradient dynamics (SGBD) algorithm, a robust alternative to Langevin-based sampling algorithms, to the gradient framework.
We characterize the impact of gradients on the Barker transition mechanism and develop a bias-corrected version that eliminates the error due to the gradient noise in the proposal.
arXiv Detail & Related papers (2024-05-14T23:47:02Z) - Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interact with their environment.
Existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards.
Our research leverages the Kalman paradigm to introduce a novel quantification and sampling algorithm called Langevinized Kalman TemporalTD.
arXiv Detail & Related papers (2024-03-19T22:18:19Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - A Contour Stochastic Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions [17.14287157979558]
We propose an adaptively weighted gradient Langevin dynamics (SGLD) for learning in big data statistics.
The proposed algorithm is tested on benchmark datasets including CIFAR100.
arXiv Detail & Related papers (2020-10-19T19:20:47Z) - An adaptive Hessian approximated stochastic gradient MCMC method [12.93317525451798]
We present an adaptive Hessian approximated gradient MCMC method to incorporate local geometric information while sampling from the posterior.
We adopt a magnitude-based weight pruning method to enforce the sparsity of the network.
arXiv Detail & Related papers (2020-10-03T16:22:15Z) - Variance Reduction for Deep Q-Learning using Stochastic Recursive
Gradient [51.880464915253924]
Deep Q-learning algorithms often suffer from poor gradient estimations with an excessive variance.
This paper introduces the framework for updating the gradient estimates in deep Q-learning, achieving a novel algorithm called SRG-DQN.
arXiv Detail & Related papers (2020-07-25T00:54:20Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
The proposed algorithm converges to the correct distribution with a controllable bias under mild conditions.
We show that the proposed algorithm canally converge to the correct distribution with a controllable bias under mild conditions.
arXiv Detail & Related papers (2020-06-29T20:57:20Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
We propose a non-uniform subsampling scheme to improve the sampling accuracy.
EWSG is designed so that a non-uniform gradient-MCMC method mimics the statistical behavior of a batch-gradient-MCMC method.
In our practical implementation of EWSG, the non-uniform subsampling is performed efficiently via a Metropolis-Hastings chain on the data index.
arXiv Detail & Related papers (2020-02-20T18:56:18Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.