論文の概要: Contrastive Clustering
- arxiv url: http://arxiv.org/abs/2009.09687v1
- Date: Mon, 21 Sep 2020 08:54:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 03:56:56.243609
- Title: Contrastive Clustering
- Title(参考訳): コントラストクラスタリング
- Authors: Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, Xi Peng
- Abstract要約: 本稿では,インスタンスレベルのコントラスト学習を明示的に行うContrastive Clustering (CC)を提案する。
特にCCは、CIFAR-10(CIFAR-100)データセット上で0.705(0.431)のNMIを達成しており、最高のベースラインと比較して最大19%(39%)のパフォーマンス向上を実現している。
- 参考スコア(独自算出の注目度): 57.71729650297379
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a one-stage online clustering method called
Contrastive Clustering (CC) which explicitly performs the instance- and
cluster-level contrastive learning. To be specific, for a given dataset, the
positive and negative instance pairs are constructed through data augmentations
and then projected into a feature space. Therein, the instance- and
cluster-level contrastive learning are respectively conducted in the row and
column space by maximizing the similarities of positive pairs while minimizing
those of negative ones. Our key observation is that the rows of the feature
matrix could be regarded as soft labels of instances, and accordingly the
columns could be further regarded as cluster representations. By simultaneously
optimizing the instance- and cluster-level contrastive loss, the model jointly
learns representations and cluster assignments in an end-to-end manner.
Extensive experimental results show that CC remarkably outperforms 17
competitive clustering methods on six challenging image benchmarks. In
particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100)
dataset, which is an up to 19\% (39\%) performance improvement compared with
the best baseline.
- Abstract(参考訳): 本稿では,インスタンスレベルおよびクラスタレベルのコントラスト学習を明示的に実行する,コントラストクラスタリング(cc)と呼ばれる1段階のオンラインクラスタリング手法を提案する。
特定のデータセットに対して、正と負のインスタンスペアはデータ拡張によって構築され、それから機能空間に投影される。
正の対の類似性を最大化し、負の対の類似性を最小化することにより、各列と列の空間においてインスタンスレベルおよびクラスタレベルのコントラスト学習を行う。
我々のキーとなる観察は、特徴行列の行はインスタンスのソフトラベルと見なすことができ、したがって列はさらにクラスタ表現と見なすことができるということである。
インスタンスレベルのコントラスト損失とクラスタレベルのコントラスト損失を同時に最適化することで、モデルがエンドツーエンドで表現とクラスタ割り当てを共同学習する。
広範な実験結果から、6つの挑戦的画像ベンチマークにおいて,ccは17の競合クラスタリング手法を著しく上回っていることがわかった。
特にccは、cifar-10(cifar-100)データセット上で0.705(0.431)のnmiを達成し、最高のベースラインと比較して最大19\%(39\%)の性能向上を達成している。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - CLC: Cluster Assignment via Contrastive Representation Learning [9.631532215759256]
コントラスト学習を用いてクラスタ割り当てを直接学習するコントラスト学習ベースのクラスタリング(CLC)を提案する。
完全なImageNetデータセットで53.4%の精度を実現し、既存のメソッドを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2023-06-08T07:15:13Z) - Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
教師なしRe-ID手法は、ラベルのないデータから堅牢で差別的な特徴を学習することを目的としている。
本稿では,動的クラスタリングとクラスタコントラスト学習(DCCC)手法を提案する。
提案したDCCCの有効性を検証するために, 広く利用されている複数の公開データセットの実験を行った。
論文 参考訳(メタデータ) (2023-03-13T01:56:53Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
クラスタリングは、事前に定義されたラベルを使わずに、類似したデータサンプルをクラスタに収集するタスクである。
我々は,新しいコントラストクラスタリング手法であるクロスインスタンスガイドコントラストクラスタリング(C3)を提案する。
提案手法は、ベンチマークコンピュータビジョンデータセット上で最先端のアルゴリズムより優れている。
論文 参考訳(メタデータ) (2022-11-14T06:28:07Z) - Twin Contrastive Learning for Online Clustering [15.9794051341163]
本稿では、インスタンスとクラスタレベルで双対学習(TCL)を行うことにより、オンラインクラスタリングを実現することを提案する。
対象のクラスタ番号の次元を持つ特徴空間にデータを投影すると、その特徴行列の行と列がインスタンスとクラスタ表現に対応していることがわかった。
論文 参考訳(メタデータ) (2022-10-21T02:12:48Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
部分的マルチビュークラスタリングの問題を解決するために,拡張自由グラフコントラスト学習フレームワークを提案する。
提案手法は、インスタンスレベルのコントラスト学習と欠落データ推論をクラスタレベルに高め、個々の欠落データがクラスタリングに与える影響を効果的に軽減する。
論文 参考訳(メタデータ) (2022-03-01T02:32:25Z) - Exploring Non-Contrastive Representation Learning for Deep Clustering [23.546602131801205]
ディープクラスタリングのための非コントラスト表現学習は、負の例のない代表的手法であるBYOLに基づいている。
NCCは、すべてのクラスタが十分に分離され、クラスタ内の例がコンパクトな埋め込み空間を形成する。
ImageNet-1Kを含むいくつかのクラスタリングベンチマークデータセットの実験結果は、NCCが最先端の手法よりかなり優れていることを示している。
論文 参考訳(メタデータ) (2021-11-23T12:21:53Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。