論文の概要: DiffWave: A Versatile Diffusion Model for Audio Synthesis
- arxiv url: http://arxiv.org/abs/2009.09761v3
- Date: Tue, 30 Mar 2021 19:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 03:56:33.148248
- Title: DiffWave: A Versatile Diffusion Model for Audio Synthesis
- Title(参考訳): DiffWave:音声合成のためのヴァーサタイル拡散モデル
- Authors: Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, Bryan Catanzaro
- Abstract要約: DiffWaveは条件および非条件波形生成のための多目的拡散確率モデルである。
メルスペクトログラムに条件付けされたニューラル・ヴォイコーディングを含む、様々な波形生成タスクで高忠実なオーディオを生成する。
これは、非条件生成課題において、自己回帰およびGANベースの波形モデルよりも大幅に優れている。
- 参考スコア(独自算出の注目度): 35.406438835268816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose DiffWave, a versatile diffusion probabilistic model
for conditional and unconditional waveform generation. The model is
non-autoregressive, and converts the white noise signal into structured
waveform through a Markov chain with a constant number of steps at synthesis.
It is efficiently trained by optimizing a variant of variational bound on the
data likelihood. DiffWave produces high-fidelity audios in different waveform
generation tasks, including neural vocoding conditioned on mel spectrogram,
class-conditional generation, and unconditional generation. We demonstrate that
DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44
versus 4.43), while synthesizing orders of magnitude faster. In particular, it
significantly outperforms autoregressive and GAN-based waveform models in the
challenging unconditional generation task in terms of audio quality and sample
diversity from various automatic and human evaluations.
- Abstract(参考訳): 本研究では,条件付きおよび無条件波形生成のための汎用拡散確率モデルdiffwaveを提案する。
モデルは非自己回帰的であり、ホワイトノイズ信号をマルコフ連鎖を通じて一定の数ステップの合成によって構造化波形に変換する。
データ確率の変動境界の変種を最適化して効率的に訓練する。
DiffWaveは、メルスペクトログラムに基づくニューラルヴォコーディング、クラス条件生成、無条件生成など、様々な波形生成タスクで高忠実なオーディオを生成する。
我々は,DiffWaveが音声品質(MOS:4.44対4.43)において強いWaveNetボコーダと一致することを示した。
特に,音声品質やサンプルの多様性の観点から,難解な無条件生成課題において,自己回帰型およびgan型波形モデルに有意に優れる。
関連論文リスト
- Accelerating High-Fidelity Waveform Generation via Adversarial Flow Matching Optimization [37.35829410807451]
本稿では,逆流マッチング最適化による高忠実かつ高効率な波形生成モデルである PeriodWave-Turbo を提案する。
さまざまな客観的メトリクスで最先端のパフォーマンスを達成するには、1,000ステップの微調整しか必要ありません。
PeriodWave のバックボーンを 29M から 70M のパラメータにスケールアップすることで、一般化を改善することで、 PeriodWave-Turbo は前例のない性能を実現している。
論文 参考訳(メタデータ) (2024-08-15T08:34:00Z) - SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and
Music Synthesis [0.0]
本稿では,HiFi-GANに基づくニューラルボコーダSpecDiff-GANを紹介する。
いくつかのデータセットに対して,提案モデルによる音声合成と音楽合成の利点を示す。
論文 参考訳(メタデータ) (2024-01-30T09:17:57Z) - DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform
Generation [25.968115316199246]
本研究では,生音声波形を生成する拡散確率的エンドツーエンドモデルを提案する。
我々のモデルは自己回帰的であり、重なり合うフレームを生成し、各フレームは以前に生成されたフレームの一部に条件付けされる。
実験により,提案モデルが他の最先端のニューラル音声生成システムと比較して,高品質な音声を生成することが示された。
論文 参考訳(メタデータ) (2023-10-02T17:42:22Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
深層生成モデルは、様々な種類の表現で条件付けられた高忠実度オーディオを生成することができる。
これらのモデルは、条件付けに欠陥がある場合や不完全な場合、可聴アーチファクトを生成する傾向がある。
低ビットレート離散表現から任意の種類のオーディオモダリティを生成する高忠実度マルチバンド拡散ベースフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-02T22:14:29Z) - FastDiff: A Fast Conditional Diffusion Model for High-Quality Speech
Synthesis [90.3069686272524]
本稿では,高品質音声合成のための高速条件拡散モデルであるFastDiffを提案する。
FastDiffは、長期の依存関係を効率的にモデル化するために、さまざまな受容的フィールドパターンの時間認識可能な位置可変の畳み込みを使用する。
我々は、FastDiffに基づいて、高忠実度音声波形を生成するエンドツーエンドのテキスト音声合成器FastDiff-TTSを設計する。
論文 参考訳(メタデータ) (2022-04-21T07:49:09Z) - NeuralDPS: Neural Deterministic Plus Stochastic Model with Multiband
Excitation for Noise-Controllable Waveform Generation [67.96138567288197]
本稿では,高い音声品質を保ち,高い合成効率とノイズ制御性を得ることができるニューラルDPSというニューラルボコーダを提案する。
ウェーブネットのボコーダより少なくとも280倍高速な波形を生成する。
また、単一コア上でのWaveGANの合成効率よりも28%高速である。
論文 参考訳(メタデータ) (2022-03-05T08:15:29Z) - RAVE: A variational autoencoder for fast and high-quality neural audio
synthesis [2.28438857884398]
本稿では,高速かつ高品質な音声波形合成が可能なリアルタイムオーディオ変分自動エンコーダ(RAVE)を提案する。
我々のモデルは48kHzのオーディオ信号を生成できる最初のモデルであり、同時に標準のラップトップCPU上で20倍高速に動作可能であることを示す。
論文 参考訳(メタデータ) (2021-11-09T09:07:30Z) - WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis [80.60577805727624]
WaveGrad 2は音声合成のための非自己回帰生成モデルである。
最先端のニューラルTSシステムの性能に近づき、高忠実度オーディオを生成することができる。
論文 参考訳(メタデータ) (2021-06-17T17:09:21Z) - WaveGrad: Estimating Gradients for Waveform Generation [55.405580817560754]
WaveGradは、データ密度の勾配を推定する波形生成の条件モデルである。
ガウスのホワイトノイズ信号から始まり、メル・スペクトログラムに条件付けされた勾配に基づくサンプリング器を通じて繰り返し信号の精製を行う。
6回の反復で高忠実度音声サンプルを生成できることが判明した。
論文 参考訳(メタデータ) (2020-09-02T17:44:10Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
本稿では,条件付き変分オートエンコーダ(CVAE)を用いた変分パラメトリックシンセサイザVaPar Synthを提案する。
提案するモデルの性能は,ピッチを柔軟に制御した楽器音の再構成と生成によって実証する。
論文 参考訳(メタデータ) (2020-03-30T16:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。