Towards Fast, Accurate and Stable 3D Dense Face Alignment
- URL: http://arxiv.org/abs/2009.09960v2
- Date: Sun, 7 Feb 2021 16:24:15 GMT
- Title: Towards Fast, Accurate and Stable 3D Dense Face Alignment
- Authors: Jianzhu Guo, Xiangyu Zhu, Yang Yang, Fan Yang, Zhen Lei and Stan Z. Li
- Abstract summary: We propose a novel regression framework named 3DDFA-V2 which makes a balance among speed, accuracy and stability.
We present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving.
- Score: 73.01620081047336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing methods of 3D dense face alignment mainly concentrate on accuracy,
thus limiting the scope of their practical applications. In this paper, we
propose a novel regression framework named 3DDFA-V2 which makes a balance among
speed, accuracy and stability. Firstly, on the basis of a lightweight backbone,
we propose a meta-joint optimization strategy to dynamically regress a small
set of 3DMM parameters, which greatly enhances speed and accuracy
simultaneously. To further improve the stability on videos, we present a
virtual synthesis method to transform one still image to a short-video which
incorporates in-plane and out-of-plane face moving. On the premise of high
accuracy and stability, 3DDFA-V2 runs at over 50fps on a single CPU core and
outperforms other state-of-the-art heavy models simultaneously. Experiments on
several challenging datasets validate the efficiency of our method. Pre-trained
models and code are available at https://github.com/cleardusk/3DDFA_V2.
Related papers
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss [9.287932323337163]
3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow.
Deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation.
We introduce a new method that is completely self-supervised and notably outperforms its fully-supervised counterparts.
arXiv Detail & Related papers (2024-10-15T18:00:00Z) - Look Gauss, No Pose: Novel View Synthesis using Gaussian Splatting without Accurate Pose Initialization [11.418632671254564]
3D Gaussian Splatting has emerged as a powerful tool for fast and accurate novel-view synthesis from a set of posed input images.
We propose an extension to the 3D Gaussian Splatting framework by optimizing the extrinsic camera parameters with respect to photometric residuals.
We show results on real-world scenes and complex trajectories through simulated environments.
arXiv Detail & Related papers (2024-10-11T12:01:15Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Minimum Latency Deep Online Video Stabilization [77.68990069996939]
We present a novel camera path optimization framework for the task of online video stabilization.
In this work, we adopt recent off-the-shelf high-quality deep motion models for motion estimation to recover the camera trajectory.
Our approach significantly outperforms state-of-the-art online methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-12-05T07:37:32Z) - Fast-SNARF: A Fast Deformer for Articulated Neural Fields [92.68788512596254]
We propose a new articulation module for neural fields, Fast-SNARF, which finds accurate correspondences between canonical space and posed space.
Fast-SNARF is a drop-in replacement in to our previous work, SNARF, while significantly improving its computational efficiency.
Because learning of deformation maps is a crucial component in many 3D human avatar methods, we believe that this work represents a significant step towards the practical creation of 3D virtual humans.
arXiv Detail & Related papers (2022-11-28T17:55:34Z) - Neural Deformable Voxel Grid for Fast Optimization of Dynamic View
Synthesis [63.25919018001152]
We propose a fast deformable radiance field method to handle dynamic scenes.
Our method achieves comparable performance to D-NeRF using only 20 minutes for training.
arXiv Detail & Related papers (2022-06-15T17:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.