Look Gauss, No Pose: Novel View Synthesis using Gaussian Splatting without Accurate Pose Initialization
- URL: http://arxiv.org/abs/2410.08743v1
- Date: Fri, 11 Oct 2024 12:01:15 GMT
- Title: Look Gauss, No Pose: Novel View Synthesis using Gaussian Splatting without Accurate Pose Initialization
- Authors: Christian Schmidt, Jens Piekenbrinck, Bastian Leibe,
- Abstract summary: 3D Gaussian Splatting has emerged as a powerful tool for fast and accurate novel-view synthesis from a set of posed input images.
We propose an extension to the 3D Gaussian Splatting framework by optimizing the extrinsic camera parameters with respect to photometric residuals.
We show results on real-world scenes and complex trajectories through simulated environments.
- Score: 11.418632671254564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting has recently emerged as a powerful tool for fast and accurate novel-view synthesis from a set of posed input images. However, like most novel-view synthesis approaches, it relies on accurate camera pose information, limiting its applicability in real-world scenarios where acquiring accurate camera poses can be challenging or even impossible. We propose an extension to the 3D Gaussian Splatting framework by optimizing the extrinsic camera parameters with respect to photometric residuals. We derive the analytical gradients and integrate their computation with the existing high-performance CUDA implementation. This enables downstream tasks such as 6-DoF camera pose estimation as well as joint reconstruction and camera refinement. In particular, we achieve rapid convergence and high accuracy for pose estimation on real-world scenes. Our method enables fast reconstruction of 3D scenes without requiring accurate pose information by jointly optimizing geometry and camera poses, while achieving state-of-the-art results in novel-view synthesis. Our approach is considerably faster to optimize than most competing methods, and several times faster in rendering. We show results on real-world scenes and complex trajectories through simulated environments, achieving state-of-the-art results on LLFF while reducing runtime by two to four times compared to the most efficient competing method. Source code will be available at https://github.com/Schmiddo/noposegs .
Related papers
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting.
We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space.
Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
arXiv Detail & Related papers (2024-11-18T08:18:44Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - Self-Calibrating 4D Novel View Synthesis from Monocular Videos Using Gaussian Splatting [14.759265492381509]
We propose a novel approach that learns a high-fidelity 4D GS scene representation with self-calibration of camera parameters.
It includes the extraction of 2D point features that robustly represent 3D structure.
Results show significant improvements over state-of-the-art methods for 4D novel view synthesis.
arXiv Detail & Related papers (2024-06-03T06:52:35Z) - A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose [44.13819148680788]
We develop a novel construct-and-optimize method for sparse view synthesis without camera poses.
Specifically, we construct a solution by using monocular depth and projecting pixels back into the 3D world.
We demonstrate results on the Tanks and Temples and Static Hikes datasets with as few as three widely-spaced views.
arXiv Detail & Related papers (2024-05-06T17:36:44Z) - GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time [112.32349668385635]
GGRt is a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses.
As the first pose-free generalizable 3D-GS framework, GGRt achieves inference at $ge$ 5 FPS and real-time rendering at $ge$ 100 FPS.
arXiv Detail & Related papers (2024-03-15T09:47:35Z) - COLMAP-Free 3D Gaussian Splatting [88.420322646756]
We propose a novel method to perform novel view synthesis without any SfM preprocessing.
We process the input frames in a sequential manner and progressively grow the 3D Gaussians set by taking one input frame at a time.
Our method significantly improves over previous approaches in view synthesis and camera pose estimation under large motion changes.
arXiv Detail & Related papers (2023-12-12T18:39:52Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.