論文の概要: Composed Variational Natural Language Generation for Few-shot Intents
- arxiv url: http://arxiv.org/abs/2009.10056v1
- Date: Mon, 21 Sep 2020 17:48:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-16 04:49:18.482812
- Title: Composed Variational Natural Language Generation for Few-shot Intents
- Title(参考訳): 数発インテントを用いた変分自然言語生成
- Authors: Congying Xia, Caiming Xiong, Philip Yu, Richard Socher
- Abstract要約: 現実的な不均衡シナリオにおいて、数ショットのインテントに対するトレーニング例を生成します。
生成した発話の質を評価するために、一般化された複数ショット意図検出タスクについて実験を行った。
提案モデルでは,2つの実世界の意図検出データセットに対して,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 118.37774762596123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on generating training examples for few-shot intents
in the realistic imbalanced scenario. To build connections between existing
many-shot intents and few-shot intents, we consider an intent as a combination
of a domain and an action, and propose a composed variational natural language
generator (CLANG), a transformer-based conditional variational autoencoder.
CLANG utilizes two latent variables to represent the utterances corresponding
to two different independent parts (domain and action) in the intent, and the
latent variables are composed together to generate natural examples.
Additionally, to improve the generator learning, we adopt the contrastive
regularization loss that contrasts the in-class with the out-of-class utterance
generation given the intent. To evaluate the quality of the generated
utterances, experiments are conducted on the generalized few-shot intent
detection task. Empirical results show that our proposed model achieves
state-of-the-art performances on two real-world intent detection datasets.
- Abstract(参考訳): 本稿では,現実的不均衡シナリオにおいて,最小ショットインテントのトレーニング例の生成に着目する。
既存の多ショットインテントと少数ショットインテントの接続を構築するために,インテントをドメインとアクションの組み合わせとみなし,トランスフォーマーに基づく条件付き変分自動エンコーダである合成変分自然言語生成器(CLANG)を提案する。
CLANGは2つの潜伏変数を用いて意図の中の2つの異なる独立部分(ドメインとアクション)に対応する発話を表現し、潜伏変数は結合して自然例を生成する。
さらに、生成学習を改善するために、クラス内とクラス外発話生成とを対比した対照的な正規化損失を採用する。
生成した発話の品質を評価するために、一般化されたマイナショットインテント検出タスクについて実験を行う。
実験結果から,提案モデルが2つの実世界の意図検出データセット上で最先端の性能を達成することを示す。
関連論文リスト
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
両手インタラクションに先立って生成を学習する新しいフレームワークであるInterHandGenを提案する。
サンプリングにアンチペネティフィケーションと合成フリーガイダンスを組み合わせることで、プラウシブルな生成を可能にする。
本手法は, 妥当性と多様性の観点から, ベースライン生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-03-26T06:35:55Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Learning Disentangled Representations for Natural Language Definitions [0.0]
テキストデータの連続的な構文的・意味的規則性は、構造的バイアスと生成的要因の両方をモデルに提供するのに有効である、と我々は主張する。
本研究では,文型,定義文の表現的・意味的に密接なカテゴリに存在する意味的構造を利用して,不整合表現を学習するための変分オートエンコーダを訓練する。
論文 参考訳(メタデータ) (2022-09-22T14:31:55Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
我々は、アスペクト項、カテゴリを抽出し、対応する極性を予測するアスペクトベースの感情分析に焦点を当てる。
本稿では,一方向の注意を伴う生成言語モデルを用いて,抽出タスクと予測タスクをシーケンス生成タスクに再構成することを提案する。
提案手法は,従来の最先端(BERTをベースとした)の性能を,数ショットとフルショットの設定において,大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-04-11T18:31:53Z) - A Contrastive Framework for Neural Text Generation [46.845997620234265]
モデル変性の根底にある理由はトークン表現の異方性分布であることを示す。
モデル表現空間を校正するための対照的な学習目標であるSimCTGと,生成したテキストのコヒーレンスを維持しつつ多様性を高めるためのデコード手法であるコントラスト検索を提案する。
論文 参考訳(メタデータ) (2022-02-13T21:46:14Z) - Disentangling Generative Factors in Natural Language with Discrete
Variational Autoencoders [0.0]
連続変数は、テキスト中のほとんどの生成因子が離散的であるという事実から、テキストデータの特徴をモデル化するのに理想的ではないかもしれない。
本稿では,言語特徴を離散変数としてモデル化し,不整合表現を学習するための変数間の独立性を促進する変分自動符号化手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T09:10:05Z) - VCDM: Leveraging Variational Bi-encoding and Deep Contextualized Word
Representations for Improved Definition Modeling [24.775371434410328]
定義モデリングの課題は、単語やフレーズの定義を学習することである。
このタスクの既存のアプローチは差別的であり、直接的ではなく暗黙的に分布的意味論と語彙的意味論を組み合わせたものである。
本稿では、文脈内で使われるフレーズとその定義の基盤となる関係を明示的にモデル化するために、連続潜時変数を導入したタスク生成モデルを提案する。
論文 参考訳(メタデータ) (2020-10-07T02:48:44Z) - Contextualized Perturbation for Textual Adversarial Attack [56.370304308573274]
逆例は自然言語処理(NLP)モデルの脆弱性を明らかにする。
本稿では,フロートおよび文法的出力を生成するContextualized AdversaRial Example生成モデルであるCLAREを提案する。
論文 参考訳(メタデータ) (2020-09-16T06:53:15Z) - Generalized Adversarially Learned Inference [42.40405470084505]
我々は、画像生成器とエンコーダを逆向きにトレーニングし、画像と潜時ベクトル対の2つの結合分布を一致させることにより、GAN内の潜時変数を推定する方法を開発した。
我々は、望まれるソリューションに関する事前または学習知識に基づいて、再構築、自己監督、その他の形式の監督に関する複数のフィードバック層を組み込んだ。
論文 参考訳(メタデータ) (2020-06-15T02:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。