Scalable Adversarial Attack on Graph Neural Networks with Alternating
Direction Method of Multipliers
- URL: http://arxiv.org/abs/2009.10233v1
- Date: Tue, 22 Sep 2020 00:33:36 GMT
- Title: Scalable Adversarial Attack on Graph Neural Networks with Alternating
Direction Method of Multipliers
- Authors: Boyuan Feng, Yuke Wang, Xu Li, and Yufei Ding
- Abstract summary: We propose SAG, the first scalable adversarial attack method with Alternating Direction Method of Multipliers (ADMM)
We show that SAG can significantly reduce the computation and memory overhead compared with the state-of-the-art approach.
- Score: 17.09807200410981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have achieved high performance in analyzing
graph-structured data and have been widely deployed in safety-critical areas,
such as finance and autonomous driving. However, only a few works have explored
GNNs' robustness to adversarial attacks, and their designs are usually limited
by the scale of input datasets (i.e., focusing on small graphs with only
thousands of nodes). In this work, we propose, SAG, the first scalable
adversarial attack method with Alternating Direction Method of Multipliers
(ADMM). We first decouple the large-scale graph into several smaller graph
partitions and cast the original problem into several subproblems. Then, we
propose to solve these subproblems using projected gradient descent on both the
graph topology and the node features that lead to considerably lower memory
consumption compared to the conventional attack methods. Rigorous experiments
further demonstrate that SAG can significantly reduce the computation and
memory overhead compared with the state-of-the-art approach, making SAG
applicable towards graphs with large size of nodes and edges.
Related papers
- Faster Inference Time for GNNs using coarsening [1.323700980948722]
coarsening-based methods are used to reduce the graph into a smaller one, resulting in faster computation.
No previous research has tackled the cost during the inference.
This paper presents a novel approach to improve the scalability of GNNs through subgraph-based techniques.
arXiv Detail & Related papers (2024-10-19T06:27:24Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - $\rm A^2Q$: Aggregation-Aware Quantization for Graph Neural Networks [18.772128348519566]
We propose the Aggregation-Aware mixed-precision Quantization ($rm A2Q$) for Graph Neural Networks (GNNs)
Our method can achieve up to 11.4% and 9.5% accuracy improvements on the node-level and graph-level tasks, respectively, and up to 2x speedup on a dedicated hardware accelerator.
arXiv Detail & Related papers (2023-02-01T02:54:35Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale (GAS) is a framework for scaling arbitrary message-passing GNNs to large graphs.
Gas prunes entire sub-trees of the computation graph by utilizing historical embeddings from prior training iterations.
Gas reaches state-of-the-art performance on large-scale graphs.
arXiv Detail & Related papers (2021-06-10T09:26:56Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
Scalability of graph neural networks (GNNs) is one of the major challenges in machine learning.
In this paper, we propose to use graph coarsening for scalable training of GNNs.
We show that, simply applying off-the-shelf coarsening methods, we can reduce the number of nodes by up to a factor of ten without causing a noticeable downgrade in classification accuracy.
arXiv Detail & Related papers (2021-06-09T15:46:17Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness.
Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance.
We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows.
We present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data.
arXiv Detail & Related papers (2020-09-08T02:17:55Z) - Scalable Attack on Graph Data by Injecting Vicious Nodes [44.56647129718062]
Graph convolution networks (GCNs) are vulnerable to carefully designed attacks, which aim to cause misclassification of a specific node on the graph with unnoticeable perturbations.
We develop a more scalable framework named Approximate Fast Gradient Sign Method (AFGSM) which considers a more practical attack scenario.
Our proposed attack method can significantly reduce the classification accuracy of GCNs and is much faster than existing methods without jeopardizing the attack performance.
arXiv Detail & Related papers (2020-04-22T02:11:13Z) - Towards an Efficient and General Framework of Robust Training for Graph
Neural Networks [96.93500886136532]
Graph Neural Networks (GNNs) have made significant advances on several fundamental inference tasks.
Despite GNNs' impressive performance, it has been observed that carefully crafted perturbations on graph structures lead them to make wrong predictions.
We propose a general framework which leverages the greedy search algorithms and zeroth-order methods to obtain robust GNNs.
arXiv Detail & Related papers (2020-02-25T15:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.