BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection
- URL: http://arxiv.org/abs/2307.15244v2
- Date: Mon, 20 Nov 2023 03:30:24 GMT
- Title: BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection
- Authors: Jie Liu, Mengting He, Xuequn Shang, Jieming Shi, Bin Cui, Hongzhi Yin
- Abstract summary: We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
- Score: 50.26074811655596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph anomaly detection (GAD) has gained increasing attention in recent years
due to its critical application in a wide range of domains, such as social
networks, financial risk management, and traffic analysis. Existing GAD methods
can be categorized into node and edge anomaly detection models based on the
type of graph objects being detected. However, these methods typically treat
node and edge anomalies as separate tasks, overlooking their associations and
frequent co-occurrences in real-world graphs. As a result, they fail to
leverage the complementary information provided by node and edge anomalies for
mutual detection. Additionally, state-of-the-art GAD methods, such as CoLA and
SL-GAD, heavily rely on negative pair sampling in contrastive learning, which
incurs high computational costs, hindering their scalability to large graphs.
To address these limitations, we propose a novel unified graph anomaly
detection framework based on bootstrapped self-supervised learning (named
BOURNE). We extract a subgraph (graph view) centered on each target node as
node context and transform it into a dual hypergraph (hypergraph view) as edge
context. These views are encoded using graph and hypergraph neural networks to
capture the representations of nodes, edges, and their associated contexts. By
swapping the context embeddings between nodes and edges and measuring the
agreement in the embedding space, we enable the mutual detection of node and
edge anomalies. Furthermore, BOURNE can eliminate the need for negative
sampling, thereby enhancing its efficiency in handling large graphs. Extensive
experiments conducted on six benchmark datasets demonstrate the superior
effectiveness and efficiency of BOURNE in detecting both node and edge
anomalies.
Related papers
- Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels.
Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations.
We propose a framework for Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection (G3AD)
arXiv Detail & Related papers (2024-04-25T07:09:05Z) - Three Revisits to Node-Level Graph Anomaly Detection: Outliers, Message
Passing and Hyperbolic Neural Networks [9.708651460086916]
In this paper, we revisit datasets and approaches for unsupervised node-level graph anomaly detection tasks.
Firstly, we introduce outlier injection methods that create more diverse and graph-based anomalies in graph datasets.
Secondly, we compare methods employing message passing against those without, uncovering the unexpected decline in performance.
arXiv Detail & Related papers (2024-03-06T19:42:34Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Cross-Domain Graph Anomaly Detection via Anomaly-aware Contrastive
Alignment [22.769474986808113]
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph.
We introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT) for GAD.
ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods.
arXiv Detail & Related papers (2022-12-02T11:21:48Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
We propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short)
By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph.
arXiv Detail & Related papers (2022-02-11T09:45:11Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.