Uncertainty-aware Attention Graph Neural Network for Defending
Adversarial Attacks
- URL: http://arxiv.org/abs/2009.10235v1
- Date: Tue, 22 Sep 2020 00:46:40 GMT
- Title: Uncertainty-aware Attention Graph Neural Network for Defending
Adversarial Attacks
- Authors: Boyuan Feng, Yuke Wang, Zheng Wang, and Yufei Ding
- Abstract summary: Existing graph neural networks (GNNs) serve as a black-box in predicting and do not provide uncertainty on predictions.
We propose UAG, the first systematic solution to defend adversarial attacks on GNNs.
Our proposed defense approach outperforms the state-of-the-art solutions by a significant margin.
- Score: 21.63854538768414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing popularity of graph-based learning, graph neural networks
(GNNs) emerge as the essential tool for gaining insights from graphs. However,
unlike the conventional CNNs that have been extensively explored and
exhaustively tested, people are still worrying about the GNNs' robustness under
the critical settings, such as financial services. The main reason is that
existing GNNs usually serve as a black-box in predicting and do not provide the
uncertainty on the predictions. On the other side, the recent advancement of
Bayesian deep learning on CNNs has demonstrated its success of quantifying and
explaining such uncertainties to fortify CNN models. Motivated by these
observations, we propose UAG, the first systematic solution to defend
adversarial attacks on GNNs through identifying and exploiting hierarchical
uncertainties in GNNs. UAG develops a Bayesian Uncertainty Technique (BUT) to
explicitly capture uncertainties in GNNs and further employs an
Uncertainty-aware Attention Technique (UAT) to defend adversarial attacks on
GNNs. Intensive experiments show that our proposed defense approach outperforms
the state-of-the-art solutions by a significant margin.
Related papers
- Explainable AI Security: Exploring Robustness of Graph Neural Networks to Adversarial Attacks [14.89001880258583]
Graph neural networks (GNNs) have achieved tremendous success, but recent studies have shown that GNNs are vulnerable to adversarial attacks.
We investigate the adversarial robustness of GNNs by considering graph data patterns, model-specific factors, and the transferability of adversarial examples.
This work illuminates the vulnerabilities of GNNs and opens many promising avenues for designing robust GNNs.
arXiv Detail & Related papers (2024-06-20T01:24:18Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
We introduce a groundbreaking approach to protect GNN models in Machine Learning from model-centric attacks.
Our approach includes a comprehensive verification schema for GNN's integrity, taking into account both transductive and inductive GNNs.
We propose a query-based verification technique, fortified with innovative node fingerprint generation algorithms.
arXiv Detail & Related papers (2023-12-13T03:17:05Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
Graph Neural Networks (GNNs) have emerged as a prominent graph learning model in various graph-based tasks.
malicious attackers could easily corrupt the fairness level of their predictions by adding perturbations to the input graph data.
We propose a principled framework named ELEGANT to study a novel problem of certifiable defense on the fairness level of GNNs.
arXiv Detail & Related papers (2023-11-05T20:29:40Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
Graph neural networks (GNNs) have emerged as competent graph learning methods for diverse real-world scenarios.
Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks.
To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness.
arXiv Detail & Related papers (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning
Attacks [43.60973654460398]
Graph Neural Networks (GNNs) are generalizations of neural networks to graph-structured data.
GNNs are vulnerable to adversarial attacks, i.e., a small perturbation to the structure can lead to a non-trivial performance degradation.
We propose Uncertainty Matching GNN (UM-GNN), that is aimed at improving the robustness of GNN models.
arXiv Detail & Related papers (2020-09-30T05:29:42Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
Adversary attacks can be easily fooled by small perturbation on the input.
Graph Neural Networks (GNNs) have been demonstrated to inherit this vulnerability.
In this survey, we categorize existing attacks and defenses, and review the corresponding state-of-the-art methods.
arXiv Detail & Related papers (2020-03-02T04:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.