Uncertainty in Graph Neural Networks: A Survey
- URL: http://arxiv.org/abs/2403.07185v1
- Date: Mon, 11 Mar 2024 21:54:52 GMT
- Title: Uncertainty in Graph Neural Networks: A Survey
- Authors: Fangxin Wang, Yuqing Liu, Kay Liu, Yibo Wang, Sourav Medya, Philip S.
Yu
- Abstract summary: Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
- Score: 50.63474656037679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have been extensively used in various real-world
applications. However, the predictive uncertainty of GNNs stemming from diverse
sources such as inherent randomness in data and model training errors can lead
to unstable and erroneous predictions. Therefore, identifying, quantifying, and
utilizing uncertainty are essential to enhance the performance of the model for
the downstream tasks as well as the reliability of the GNN predictions. This
survey aims to provide a comprehensive overview of the GNNs from the
perspective of uncertainty with an emphasis on its integration in graph
learning. We compare and summarize existing graph uncertainty theory and
methods, alongside the corresponding downstream tasks. Thereby, we bridge the
gap between theory and practice, meanwhile connecting different GNN
communities. Moreover, our work provides valuable insights into promising
directions in this field.
Related papers
- Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data.
Despite their efficacy, GNNs have limited ability to provide robust uncertainty estimates.
We propose Conditional Shift Robust (CondSR) conformal prediction for GNNs.
arXiv Detail & Related papers (2024-05-20T11:47:31Z) - Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
Neural Networks [40.95782849532316]
We propose a novel training framework designed to improve intrinsic GNN uncertainty estimates.
Our framework adapts the principle of centering data to graph data through novel graph anchoring strategies.
Our work provides insights into uncertainty estimation for GNNs, and demonstrates the utility of G-$Delta$UQ in obtaining reliable estimates.
arXiv Detail & Related papers (2024-01-07T00:58:33Z) - When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook [23.45046265345568]
Graph Neural Networks (GNNs) have emerged as powerful representation learning tools for capturing complex dependencies within diverse graph-structured data.
GNNs have raised serious concerns regarding their trustworthiness, including susceptibility to distribution shift, biases towards certain populations, and lack of explainability.
Integrating causal learning techniques into GNNs has sparked numerous ground-breaking studies since many GNN trustworthiness issues can be alleviated.
arXiv Detail & Related papers (2023-12-19T13:26:14Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Trustworthy Graph Neural Networks: Aspects, Methods and Trends [115.84291569988748]
Graph neural networks (GNNs) have emerged as competent graph learning methods for diverse real-world scenarios.
Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks.
To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness.
arXiv Detail & Related papers (2022-05-16T02:21:09Z) - A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy,
Robustness, Fairness, and Explainability [59.80140875337769]
Graph Neural Networks (GNNs) have made rapid developments in the recent years.
GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data.
This paper gives a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability.
arXiv Detail & Related papers (2022-04-18T21:41:07Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.