Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information
- URL: http://arxiv.org/abs/2009.10253v1
- Date: Tue, 22 Sep 2020 00:51:45 GMT
- Title: Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information
- Authors: Alessandro Bertagnon (University of Ferrara)
- Abstract summary: We present an overview of our current research activities concerning the development of new algorithms for route planning problems.
The research so far has focused in particular on the Euclidean Traveling Salesperson Problem (Euclidean TSP)
The aim is to exploit the results obtained also to other problems of the same category, such as the Euclidean Vehicle Problem (Euclidean VRP), in the future.
- Score: 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Problems affecting the transport of people or goods are plentiful in industry
and commerce and they also appear to be at the origin of much more complex
problems. In recent years, the logistics and transport sector keeps growing
supported by technological progress, i.e. companies to be competitive are
resorting to innovative technologies aimed at efficiency and effectiveness.
This is why companies are increasingly using technologies such as Artificial
Intelligence (AI), Blockchain and Internet of Things (IoT). Artificial
intelligence, in particular, is often used to solve optimization problems in
order to provide users with the most efficient ways to exploit available
resources. In this work we present an overview of our current research
activities concerning the development of new algorithms, based on CLP
techniques, for route planning problems exploiting the geometric information
intrinsically present in many of them or in some of their variants. The
research so far has focused in particular on the Euclidean Traveling
Salesperson Problem (Euclidean TSP) with the aim to exploit the results
obtained also to other problems of the same category, such as the Euclidean
Vehicle Routing Problem (Euclidean VRP), in the future.
Related papers
- Artificial Intelligence In Patent And Market Intelligence: A New Paradigm For Technology Scouting [2.9954831490478044]
This paper presents the development of an AI powered software platform to transform technology scouting and solution discovery in industrial R&D.<n>The proposed platform utilizes cutting edge LLM capabilities including semantic understanding, contextual reasoning, and cross-domain knowledge extraction.<n>The system processes unstructured patent texts, such as claims and technical descriptions, and systematically extracts potential innovations aligned with the given problem context.<n>In addition to patent analysis, the platform integrates commercial intelligence by identifying validated market solutions and active organizations addressing similar challenges.
arXiv Detail & Related papers (2025-07-27T15:22:39Z) - SoK: Advances and Open Problems in Web Tracking [71.54586748169943]
Web tracking is a pervasive and opaque practice that enables personalized advertising, and conversion tracking.<n>Web tracking is undergoing a once-in-a-generation transformation driven by shifts in the advertising industry, the adoption of anti-tracking countermeasures by browsers, and the growing enforcement of emerging privacy regulations.<n>This Systematization of Knowledge (SoK) aims to consolidate and synthesize this wide-ranging research, offering a comprehensive overview of the technical mechanisms, countermeasures, and regulations that shape the modern and rapidly evolving web tracking landscape.
arXiv Detail & Related papers (2025-06-16T23:30:54Z) - Large Neighborhood and Hybrid Genetic Search for Inventory Routing Problems [4.387337528923525]
The inventory routing problem (IRP) focuses on jointly optimizing inventory and distribution operations from a supplier to retailers over multiple days.<n>We develop a new large neighborhood search operator tailored for the IRP.<n>Specifically, the operator optimally removes and reinserts all visits to a specific retailer while minimizing routing and inventory costs.
arXiv Detail & Related papers (2025-05-28T21:18:08Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.
We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.
For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - Generative AI in Transportation Planning: A Survey [50.88844036728445]
We present the first comprehensive framework for leveraging GenAI in transportation planning.
From the transportation planning perspective, we examine the role of GenAI in automating descriptive, predictive, generative, simulation, and explainable tasks.
We address critical challenges, including data scarcity, explainability, bias mitigation, and the development of domain-specific evaluation frameworks.
arXiv Detail & Related papers (2025-03-10T10:33:31Z) - A Survey on Algorithmic Developments in Optimal Transport Problem with Applications [0.0]
Optimal Transport (OT) has established itself as a robust framework for quantifying differences between distributions.
This paper offers a detailed examination of the OT problem, beginning with its theoretical foundations.
It explores cutting-edge algorithms, including Sinkhorn iterations, primal-dual strategies, and reduction-based approaches.
arXiv Detail & Related papers (2025-01-08T18:06:30Z) - Blockchain-based AI Methods for Managing Industrial IoT: Recent Developments, Integration Challenges and Opportunities [3.3030080038744947]
Authors present a comprehensive survey on the AI approaches with BC in the smart IIoT.
We focus on state-of-the-art overviews regarding AI, BC, and smart IoT applications.
We highlight the various issues--security, stability, scalability, and confidentiality.
arXiv Detail & Related papers (2024-05-21T07:34:49Z) - Introduction to Algogens [0.0]
Algogens is a promising integration of generative AI with traditional algorithms.
The book explores the basics of Algogens, their development, applications, and advantages.
It offers a balanced look at the prospects and obstacles facing Algogens.
arXiv Detail & Related papers (2024-03-03T07:52:10Z) - A Survey of Generative AI for Intelligent Transportation Systems: Road Transportation Perspective [7.770651543578893]
We introduce the principles of different generative AI techniques.
We classify tasks in ITS into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making.
We illustrate how generative AI techniques addresses key issues in these four different types of tasks.
arXiv Detail & Related papers (2023-12-13T16:13:23Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Physical Computing for Materials Acceleration Platforms [81.09376948478891]
We argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums.
We outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems.
We expect to introduce a new era of innovative collaboration between materials researchers and computer scientists.
arXiv Detail & Related papers (2022-08-17T23:03:54Z) - Big Data Analytics Applying the Fusion Approach of Multicriteria
Decision Making with Deep Learning Algorithms [0.0]
Multicriteria based decision making is one of the key issues to solve for various issues related to the alternative effects in big data analysis.
It tends to find a solution based on the latest machine learning techniques that include algorithms like decision making and deep learning mechanism based on multicriteria.
In essence, several fields, including business, agriculture, information technology, and computer science, use deep learning and multicriteria-based decision-making problems.
arXiv Detail & Related papers (2021-02-02T05:56:03Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.