Introduction to Algogens
- URL: http://arxiv.org/abs/2403.01426v1
- Date: Sun, 3 Mar 2024 07:52:10 GMT
- Title: Introduction to Algogens
- Authors: Amir Shachar
- Abstract summary: Algogens is a promising integration of generative AI with traditional algorithms.
The book explores the basics of Algogens, their development, applications, and advantages.
It offers a balanced look at the prospects and obstacles facing Algogens.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This book introduces the concept of Algogens, a promising integration of
generative AI with traditional algorithms aimed at improving problem-solving
techniques across various fields. It provides an accessible overview of how
Algogens combine AI's innovative potential with algorithms' reliability to
tackle complex challenges more effectively than either could alone.
The text explores the basics of Algogens, their development, applications,
and advantages, such as better adaptability and efficiency. Through examples
and case studies, readers will learn about Algogens' practical uses today and
their potential for future cybersecurity, healthcare, and environmental science
innovation.
Acknowledging new technologies' challenges and ethical considerations, the
book offers a balanced look at the prospects and obstacles facing Algogens. It
invites a broad audience, including experts and newcomers, to engage with the
topic and consider Algogens' role in advancing our problem-solving
capabilities.
This work is presented as a starting point for anyone interested in the
intersection of AI and algorithms, encouraging further exploration and
discussion on this emerging field. It aims to spark curiosity and contribute to
the ongoing conversation about how technology can evolve to meet the complex
demands of the AI era.
Related papers
- Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives [10.16399860867284]
The emergence of Generative Artificial Intelligence (AI) and Large Language Models (LLMs) has marked a new era of Natural Language Processing (NLP)
This paper explores the current state of these cutting-edge technologies, demonstrating their remarkable advancements and wide-ranging applications.
arXiv Detail & Related papers (2024-07-20T18:48:35Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Mathematics, word problems, common sense, and artificial intelligence [0.0]
We discuss the capacities and limitations of current artificial intelligence (AI) technology to solve word problems that combine elementary knowledge with commonsense reasoning.
We review three approaches that have been developed, using AI natural language technology.
We argue that it is not clear whether these kinds of limitations will be important in developing AI technology for pure mathematical research.
arXiv Detail & Related papers (2023-01-23T21:21:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Mapping of Real World Problems to Nature Inspired Algorithm using Goal
based Classification and TRIZ [0.0]
A novel method based on TRIZ to map the real-world problems to nature problems is explained here.
For this framework to work, a novel classification of NIA based on the end goal that nature is trying to achieve is devised.
arXiv Detail & Related papers (2020-10-08T06:55:31Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
We present an overview of our current research activities concerning the development of new algorithms for route planning problems.
The research so far has focused in particular on the Euclidean Traveling Salesperson Problem (Euclidean TSP)
The aim is to exploit the results obtained also to other problems of the same category, such as the Euclidean Vehicle Problem (Euclidean VRP), in the future.
arXiv Detail & Related papers (2020-09-22T00:51:45Z) - Nature-Inspired Optimization Algorithms: Challenges and Open Problems [3.7692411550925673]
Problems in science and engineering can be formulated as optimization problems, subject to complex nonlinear constraints.
The solutions of highly nonlinear problems usually require sophisticated optimization algorithms, and traditional algorithms may struggle to deal with such problems.
A current trend is to use nature-inspired algorithms due to their flexibility and effectiveness.
arXiv Detail & Related papers (2020-03-08T13:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.