Overlapping community detection in networks via sparse spectral
decomposition
- URL: http://arxiv.org/abs/2009.10641v2
- Date: Mon, 15 Feb 2021 06:43:18 GMT
- Title: Overlapping community detection in networks via sparse spectral
decomposition
- Authors: Jes\'us Arroyo, Elizaveta Levina
- Abstract summary: We consider the problem of estimating overlapping community memberships in a network, where each node can belong to multiple communities.
Our algorithm is based on sparse principal subspace estimation with iterative thresholding.
We show that a fixed point of the algorithm corresponds to correct node memberships under a version of the block model.
- Score: 1.0660480034605242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of estimating overlapping community memberships in a
network, where each node can belong to multiple communities. More than a few
communities per node are difficult to both estimate and interpret, so we focus
on sparse node membership vectors. Our algorithm is based on sparse principal
subspace estimation with iterative thresholding. The method is computationally
efficient, with a computational cost equivalent to estimating the leading
eigenvectors of the adjacency matrix, and does not require an additional
clustering step, unlike spectral clustering methods. We show that a fixed point
of the algorithm corresponds to correct node memberships under a version of the
stochastic block model. The methods are evaluated empirically on simulated and
real-world networks, showing good statistical performance and computational
efficiency.
Related papers
- Semi-supervised Community Detection via Structural Similarity Metrics [0.0]
We study a semi-supervised community detection problem in which the objective is to estimate the community label of a new node.
We propose an algorithm that computes a structural similarity metric' between the new node and each of the $K$ communities.
Our findings highlight, to the best of our knowledge, the first semi-supervised community detection algorithm that offers theoretical guarantees.
arXiv Detail & Related papers (2023-06-01T19:02:50Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Implicit models, latent compression, intrinsic biases, and cheap lunches
in community detection [0.0]
Community detection aims to partition a network into clusters of nodes to summarize its large-scale structure.
Some community detection methods are inferential, explicitly deriving the clustering objective through a probabilistic generative model.
Other methods are descriptive, dividing a network according to an objective motivated by a particular application.
We present a solution that associates any community detection objective, inferential or descriptive, with its corresponding implicit network generative model.
arXiv Detail & Related papers (2022-10-17T15:38:41Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
We propose a spectral algorithm that achieves perfect clustering with high probability on a class of large, sparse networks.
Our method is the first to offer a guarantee of consistent latent structure recovery using spectral clustering.
arXiv Detail & Related papers (2022-05-17T01:41:06Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Mixed Membership Graph Clustering via Systematic Edge Query [22.77704627076251]
This work considers clustering nodes of a largely incomplete graph.
Under the problem setting, only a small amount of queries about the edges can be made, but the entire graph is not observable.
This problem finds applications in large-scale data clustering using limited annotations, community detection under restricted survey resources, and graph topology inference.
arXiv Detail & Related papers (2020-11-25T19:19:05Z) - Spectral clustering on spherical coordinates under the degree-corrected
stochastic blockmodel [5.156484100374058]
A novel spectral clustering algorithm is proposed for community detection under the degree-corrected blockmodel.
Results show improved performance over competing methods in representing computer networks.
arXiv Detail & Related papers (2020-11-09T16:55:38Z) - A General Method for Robust Learning from Batches [56.59844655107251]
We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains.
We derive the first robust computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
arXiv Detail & Related papers (2020-02-25T18:53:25Z) - Quantized Decentralized Stochastic Learning over Directed Graphs [52.94011236627326]
We consider a decentralized learning problem where data points are distributed among computing nodes communicating over a directed graph.
As the model size gets large, decentralized learning faces a major bottleneck that is the communication load due to each node transmitting messages (model updates) to its neighbors.
We propose the quantized decentralized learning algorithm over directed graphs that is based on the push-sum algorithm in decentralized consensus optimization.
arXiv Detail & Related papers (2020-02-23T18:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.