Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs
- URL: http://arxiv.org/abs/2203.01388v1
- Date: Wed, 2 Mar 2022 20:07:04 GMT
- Title: Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs
- Authors: Koby Hayashi, Sinan G. Aksoy, Haesun Park
- Abstract summary: Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
- Score: 5.301300942803395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cut-based directed graph (digraph) clustering often focuses on finding dense
within-cluster or sparse between-cluster connections, similar to cut-based
undirected graph clustering methods. In contrast, for flow-based clusterings
the edges between clusters tend to be oriented in one direction and have been
found in migration data, food webs, and trade data. In this paper we introduce
a spectral algorithm for finding flow-based clusterings. The proposed algorithm
is based on recent work which uses complex-valued Hermitian matrices to
represent digraphs. By establishing an algebraic relationship between a
complex-valued Hermitian representation and an associated real-valued,
skew-symmetric matrix the proposed algorithm produces clusterings while
remaining completely in the real field. Our algorithm uses less memory and
asymptotically less computation while provably preserving solution quality. We
also show the algorithm can be easily implemented using standard computational
building blocks, possesses better numerical properties, and loans itself to a
natural interpretation via an objective function relaxation argument.
Related papers
- Reliable Node Similarity Matrix Guided Contrastive Graph Clustering [51.23437296378319]
We introduce a new framework, Reliable Node Similarity Matrix Guided Contrastive Graph Clustering (NS4GC)
Our method introduces node-neighbor alignment and semantic-aware sparsification, ensuring the node similarity matrix is both accurate and efficiently sparse.
arXiv Detail & Related papers (2024-08-07T13:36:03Z) - HeNCler: Node Clustering in Heterophilous Graphs through Learned Asymmetric Similarity [55.27586970082595]
HeNCler is a novel approach for Heterophilous Node Clustering.
We show that HeNCler significantly enhances performance in node clustering tasks within heterophilous graph contexts.
arXiv Detail & Related papers (2024-05-27T11:04:05Z) - MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity
and Degree Descent Criterion [0.6906005491572401]
spectral clustering is popular and attractive due to the remarkable performance, easy implementation, and strong adaptability.
We propose MeanCut as the objective function and greedily optimize it in degree descending order for a nondestructive graph partition.
The validity of our algorithm is demonstrated by testifying on real-world benchmarks and application of face recognition.
arXiv Detail & Related papers (2023-12-07T06:19:39Z) - FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
We present FLASC, an algorithm that detects branches within clusters to identify subpopulations.
Two variants of the algorithm are presented, which trade computational cost for noise robustness.
We show that both variants scale similarly to HDBSCAN* in terms of computational cost and provide stable outputs.
arXiv Detail & Related papers (2023-11-27T14:55:16Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More [30.919536115917726]
We present a probabilistic model based on non-negative matrix factorization which unifies clustering and simplification.
By relaxing the hard clustering to a soft clustering, our algorithm relaxes potentially hard clustering problems to a tractable ones.
arXiv Detail & Related papers (2023-08-12T02:47:57Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - flow-based clustering and spectral clustering: a comparison [0.688204255655161]
We study a novel graph clustering method for data with an intrinsic network structure.
We exploit an intrinsic network structure of data to construct Euclidean feature vectors.
Our results indicate that our clustering methods can cope with certain graph structures.
arXiv Detail & Related papers (2022-06-20T21:49:52Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Biclustering with Alternating K-Means [5.089110111757978]
We provide a new formulation of the biclustering problem based on the idea of minimizing the empirical clustering risk.
We propose a simple and novel algorithm that finds a local minimum by alternating the use of an adapted version of the k-means clustering algorithm between columns and rows.
The results demonstrate that our algorithm is able to detect meaningful structures in the data and outperform other competing biclustering methods in various settings and situations.
arXiv Detail & Related papers (2020-09-09T20:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.