Kernelized dense layers for facial expression recognition
- URL: http://arxiv.org/abs/2009.10814v1
- Date: Tue, 22 Sep 2020 21:02:00 GMT
- Title: Kernelized dense layers for facial expression recognition
- Authors: M.Amine Mahmoudi, Aladine Chetouani, Fatma Boufera and Hedi Tabia
- Abstract summary: We propose a Kernelized Dense Layer (KDL) which captures higher order feature interactions instead of conventional linear relations.
We show that our model achieves competitive results with respect to the state-of-the-art approaches.
- Score: 10.98068123467568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully connected layer is an essential component of Convolutional Neural
Networks (CNNs), which demonstrates its efficiency in computer vision tasks.
The CNN process usually starts with convolution and pooling layers that first
break down the input images into features, and then analyze them independently.
The result of this process feeds into a fully connected neural network
structure which drives the final classification decision. In this paper, we
propose a Kernelized Dense Layer (KDL) which captures higher order feature
interactions instead of conventional linear relations. We apply this method to
Facial Expression Recognition (FER) and evaluate its performance on RAF,
FER2013 and ExpW datasets. The experimental results demonstrate the benefits of
such layer and show that our model achieves competitive results with respect to
the state-of-the-art approaches.
Related papers
- Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Enhancing Kinship Verification through Multiscale Retinex and Combined
Deep-Shallow features [2.829220962949294]
This study integrates a preprocessing method named Multiscale Retinex (MSR), which amplifies image quality and elevates contrast.
For deep feature extraction, we turn to the prowess of the VGG16 model, which is pre-trained on a convolutional neural network.
The robustness and efficacy of our method have been put to the test through meticulous experiments on three rigorous kinship datasets.
arXiv Detail & Related papers (2023-12-06T15:52:31Z) - ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations [0.0]
Activation functions play a decisive role in determining the capacity of Deep Neural Networks.
In this paper, a Convolutional Neural Network model named as ASU-CNN is proposed.
The network achieved promising results on both training and testing data for the classification of CIFAR-10.
arXiv Detail & Related papers (2023-05-28T16:52:25Z) - Kernel function impact on convolutional neural networks [10.98068123467568]
We study the usage of kernel functions at the different layers in a convolutional neural network.
We show how one can effectively leverage kernel functions, by introducing a more distortion aware pooling layers.
We propose Kernelized Dense Layers (KDL), which replace fully-connected layers.
arXiv Detail & Related papers (2023-02-20T19:57:01Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - Insights on Neural Representations for End-to-End Speech Recognition [28.833851817220616]
End-to-end automatic speech recognition (ASR) models aim to learn a generalised speech representation.
Previous investigations of network similarities using correlation analysis techniques have not been explored for End-to-End ASR models.
This paper analyses and explores the internal dynamics between layers during training with CNN, LSTM and Transformer based approaches.
arXiv Detail & Related papers (2022-05-19T10:19:32Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
We introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based facial expression recognition.
We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0.
arXiv Detail & Related papers (2020-10-26T07:31:51Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
Current state-of-the-art models for automatic Facial Expression Recognition (FER) are based on very deep neural networks that are effective but rather expensive to train.
We formalize the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks.
We demonstrate how our model achieves a comparable, if not better, performance to the current state-of-the-art in FER.
arXiv Detail & Related papers (2020-09-15T09:25:37Z) - Towards Improved Human Action Recognition Using Convolutional Neural
Networks and Multimodal Fusion of Depth and Inertial Sensor Data [1.52292571922932]
This paper attempts at improving the accuracy of Human Action Recognition (HAR) by fusion of depth and inertial sensor data.
We transform the depth data into Sequential Front view Images(SFI) and fine-tune the pre-trained AlexNet on these images.
Inertial data is converted into Signal Images (SI) and another convolutional neural network (CNN) is trained on these images.
arXiv Detail & Related papers (2020-08-22T03:41:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.