ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations
- URL: http://arxiv.org/abs/2305.19146v1
- Date: Sun, 28 May 2023 16:52:25 GMT
- Title: ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations
- Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
- Abstract summary: Activation functions play a decisive role in determining the capacity of Deep Neural Networks.
In this paper, a Convolutional Neural Network model named as ASU-CNN is proposed.
The network achieved promising results on both training and testing data for the classification of CIFAR-10.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Activation functions play a decisive role in determining the capacity of Deep
Neural Networks as they enable neural networks to capture inherent
nonlinearities present in data fed to them. The prior research on activation
functions primarily focused on the utility of monotonic or non-oscillatory
functions, until Growing Cosine Unit broke the taboo for a number of
applications. In this paper, a Convolutional Neural Network model named as
ASU-CNN is proposed which utilizes recently designed activation function ASU
across its layers. The effect of this non-monotonic and oscillatory function is
inspected through feature map visualizations from different convolutional
layers. The optimization of proposed network is offered by Adam with a
fine-tuned adjustment of learning rate. The network achieved promising results
on both training and testing data for the classification of CIFAR-10. The
experimental results affirm the computational feasibility and efficacy of the
proposed model for performing tasks related to the field of computer vision.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KANs) reshape the neural network learning via the stack of non-linear learnable activation functions.
We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN.
We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures.
arXiv Detail & Related papers (2024-06-05T04:13:03Z) - DCNN: Dual Cross-current Neural Networks Realized Using An Interactive Deep Learning Discriminator for Fine-grained Objects [48.65846477275723]
This study proposes novel dual-current neural networks (DCNN) to improve the accuracy of fine-grained image classification.
The main novel design features for constructing a weakly supervised learning backbone model DCNN include (a) extracting heterogeneous data, (b) keeping the feature map resolution unchanged, (c) expanding the receptive field, and (d) fusing global representations and local features.
arXiv Detail & Related papers (2024-05-07T07:51:28Z) - ENN: A Neural Network with DCT Adaptive Activation Functions [2.2713084727838115]
We present Expressive Neural Network (ENN), a novel model in which the non-linear activation functions are modeled using the Discrete Cosine Transform (DCT)
This parametrization keeps the number of trainable parameters low, is appropriate for gradient-based schemes, and adapts to different learning tasks.
The performance of ENN outperforms state of the art benchmarks, providing above a 40% gap in accuracy in some scenarios.
arXiv Detail & Related papers (2023-07-02T21:46:30Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Network Comparison Study of Deep Activation Feature Discriminability
with Novel Objects [0.5076419064097732]
State-of-the-art computer visions algorithms have incorporated Deep Neural Networks (DNN) in feature extracting roles, creating Deep Convolutional Activation Features (DeCAF)
This study analyzes the general discriminability of novel object visual appearances encoded into the DeCAF space of six of the leading visual recognition DNN architectures.
arXiv Detail & Related papers (2022-02-08T07:40:53Z) - CRNNTL: convolutional recurrent neural network and transfer learning for
QSAR modelling [4.090810719630087]
We propose the convolutional recurrent neural network and transfer learning (CRNNTL) for QSAR modelling.
Our strategy takes advantages of both convolutional and recurrent neural networks for feature extraction, as well as the data augmentation method.
arXiv Detail & Related papers (2021-09-07T20:04:55Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Neural Network Structure Design based on N-Gauss Activation Function [0.2578242050187029]
We introduce the core block N-Gauss, N-Gauss, and Swish neural network structure design to train MNIST, CIFAR10, and CIFAR100 respectively.
N-Gauss gives full play to the main role of nonlinear modeling of activation functions, so that deep convolutional neural networks have hierarchical nonlinear mapping learning capabilities.
arXiv Detail & Related papers (2021-06-01T11:16:37Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding.
The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library.
The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function.
arXiv Detail & Related papers (2021-05-29T15:28:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.