HiCOMEX: Facial Action Unit Recognition Based on Hierarchy Intensity
Distribution and COMEX Relation Learning
- URL: http://arxiv.org/abs/2009.10892v3
- Date: Thu, 29 Apr 2021 02:04:23 GMT
- Title: HiCOMEX: Facial Action Unit Recognition Based on Hierarchy Intensity
Distribution and COMEX Relation Learning
- Authors: Ziqiang Shi and Liu Liu and Zhongling Liu and Rujie Liu and Xiaoyu Mi
and and Kentaro Murase
- Abstract summary: We propose a novel framework for the AU detection from a single input image.
Our algorithm uses facial landmarks to detect the features of local AUs.
Our experiments on the challenging BP4D and DISFA benchmarks yield F1-scores of 63.7% and 61.8% respectively.
- Score: 12.450173086494944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of facial action units (AUs) has been studied as it has the
competition due to the wide-ranging applications thereof. In this paper, we
propose a novel framework for the AU detection from a single input image by
grasping the \textbf{c}o-\textbf{o}ccurrence and \textbf{m}utual
\textbf{ex}clusion (COMEX) as well as the intensity distribution among AUs. Our
algorithm uses facial landmarks to detect the features of local AUs. The
features are input to a bidirectional long short-term memory (BiLSTM) layer for
learning the intensity distribution. Afterwards, the new AU feature
continuously passed through a self-attention encoding layer and a
continuous-state modern Hopfield layer for learning the COMEX relationships.
Our experiments on the challenging BP4D and DISFA benchmarks without any
external data or pre-trained models yield F1-scores of 63.7\% and 61.8\%
respectively, which shows our proposed networks can lead to performance
improvement in the AU detection task.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Deep Boosting Learning: A Brand-new Cooperative Approach for Image-Text Matching [53.05954114863596]
We propose a brand-new Deep Boosting Learning (DBL) algorithm for image-text matching.
An anchor branch is first trained to provide insights into the data properties.
A target branch is concurrently tasked with more adaptive margin constraints to further enlarge the relative distance between matched and unmatched samples.
arXiv Detail & Related papers (2024-04-28T08:44:28Z) - Multi-scale Promoted Self-adjusting Correlation Learning for Facial
Action Unit Detection [37.841035367349434]
Facial Action Unit (AU) detection is a crucial task in affective computing and social robotics.
Previous methods used fixed AU correlations based on expert experience or statistical rules on specific benchmarks.
This paper proposes a novel self-adjusting AU-correlation learning (SACL) method with less proposes for AU detection.
arXiv Detail & Related papers (2023-08-15T13:43:48Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Weakly Supervised Regional and Temporal Learning for Facial Action Unit
Recognition [36.350407471391065]
We propose two auxiliary AU related tasks to bridge the gap between limited annotations and the model performance.
A single image based optical flow estimation task is proposed to leverage the dynamic change of facial muscles.
By incorporating semi-supervised learning, we propose an end-to-end trainable framework named weakly supervised regional and temporal learning.
arXiv Detail & Related papers (2022-04-01T12:02:01Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
In this paper, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework.
By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features.
Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-01-11T09:44:00Z) - Self-Supervised Regional and Temporal Auxiliary Tasks for Facial Action
Unit Recognition [29.664359264758495]
We propose two auxiliary AU related tasks to bridge the gap between limited annotations and the model performance.
To enhance the discrimination of regional features with AU relation embedding, we design a task of RoI inpainting to recover the randomly cropped AU patches.
A single image based optical flow estimation task is proposed to leverage the dynamic change of facial muscles.
Based on these two self-supervised auxiliary tasks, local features, mutual relation and motion cues of AUs are better captured in the backbone network.
arXiv Detail & Related papers (2021-07-30T02:39:45Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - Facial Action Unit Intensity Estimation via Semantic Correspondence
Learning with Dynamic Graph Convolution [27.48620879003556]
We present a new learning framework that automatically learns the latent relationships of AUs via establishing semantic correspondences between feature maps.
In the heatmap regression-based network, feature maps preserve rich semantic information associated with AU intensities and locations.
This motivates us to model the correlation among feature channels, which implicitly represents the co-occurrence relationship of AU intensity levels.
arXiv Detail & Related papers (2020-04-20T23:55:30Z) - J$\hat{\text{A}}$A-Net: Joint Facial Action Unit Detection and Face
Alignment via Adaptive Attention [57.51255553918323]
We propose a novel end-to-end deep learning framework for joint AU detection and face alignment.
Our framework significantly outperforms the state-of-the-art AU detection methods on the challenging BP4D, DISFA, GFT and BP4D+ benchmarks.
arXiv Detail & Related papers (2020-03-18T12:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.