論文の概要: Semantics-Preserving Adversarial Training
- arxiv url: http://arxiv.org/abs/2009.10978v1
- Date: Wed, 23 Sep 2020 07:42:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 15:18:38.234167
- Title: Semantics-Preserving Adversarial Training
- Title(参考訳): セマンティクス保存型対向訓練
- Authors: Wonseok Lee, Hanbit Lee, Sang-goo Lee
- Abstract要約: 逆行訓練は、訓練データに逆行例を含めることで、ディープニューラルネットワーク(DNN)の逆行性を改善する技術である。
本研究では,すべてのクラスで共有される画素の摂動を促すセマンティックス保存逆行訓練(SPAT)を提案する。
実験の結果,SPATは対向ロバスト性を向上し,CIFAR-10およびCIFAR-100の最先端結果を達成することがわかった。
- 参考スコア(独自算出の注目度): 12.242659601882147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial training is a defense technique that improves adversarial
robustness of a deep neural network (DNN) by including adversarial examples in
the training data. In this paper, we identify an overlooked problem of
adversarial training in that these adversarial examples often have different
semantics than the original data, introducing unintended biases into the model.
We hypothesize that such non-semantics-preserving (and resultingly ambiguous)
adversarial data harm the robustness of the target models. To mitigate such
unintended semantic changes of adversarial examples, we propose
semantics-preserving adversarial training (SPAT) which encourages perturbation
on the pixels that are shared among all classes when generating adversarial
examples in the training stage. Experiment results show that SPAT improves
adversarial robustness and achieves state-of-the-art results in CIFAR-10 and
CIFAR-100.
- Abstract(参考訳): 敵のトレーニングは、訓練データに敵の例を含めることで、ディープニューラルネットワーク(DNN)の敵の堅牢性を改善する防衛技術である。
本稿では,これらの例が元のデータとは異なる意味を持つことが多く,意図しないバイアスをモデルに導入するという,敵対的トレーニングの見過ごされた問題を明らかにする。
我々は、そのような非セマンティック保存(そして結果として曖昧な)敵データがターゲットモデルの堅牢性を損なうと仮定する。
そこで本稿では, 対人例の意図せぬ意味変化を軽減するために, 対人例を生成する際に, 全クラス間で共有される画素の摂動を促す意味保存対人訓練(SPAT)を提案する。
実験の結果,SPATは対向ロバスト性を向上し,CIFAR-10およびCIFAR-100の最先端結果を達成することがわかった。
関連論文リスト
- Improved Adversarial Training Through Adaptive Instance-wise Loss
Smoothing [5.1024659285813785]
敵の訓練は、このような敵の攻撃に対する最も成功した防御であった。
本稿では,新たな対人訓練手法を提案する。
本手法は,$ell_infty$-norm制約攻撃に対する最先端のロバスト性を実現する。
論文 参考訳(メタデータ) (2023-03-24T15:41:40Z) - On the Effect of Adversarial Training Against Invariance-based
Adversarial Examples [0.23624125155742057]
この研究は、畳み込みニューラルネットワーク(CNN)における不変性に基づく逆トレーニングの効果に対処する。
本研究は,非分散型および摂動型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型対向型を適用した場合,連続的でなく連続的に実施すべきであることを示す。
論文 参考訳(メタデータ) (2023-02-16T12:35:37Z) - The Enemy of My Enemy is My Friend: Exploring Inverse Adversaries for
Improving Adversarial Training [72.39526433794707]
敵の訓練とその変種は、敵の例に対抗して最も効果的なアプローチであることが示されている。
本稿では,モデルが類似した出力を生成することを奨励する,新たな対角訓練手法を提案する。
本手法は,最先端のロバスト性および自然な精度を実現する。
論文 参考訳(メタデータ) (2022-11-01T15:24:26Z) - Adversarial Pretraining of Self-Supervised Deep Networks: Past, Present
and Future [132.34745793391303]
本稿では,畳み込みニューラルネットワークと視覚変換器の両方を含む自己教師型深層ネットワークの対角的事前学習について検討する。
対戦相手を入力レベルと特徴レベルのいずれかの事前学習モデルに組み込むには、既存のアプローチは2つのグループに大別される。
論文 参考訳(メタデータ) (2022-10-23T13:14:06Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
本稿では,特徴分離性を備えた対人訓練(ATFS)により,クラス内特徴の類似性を向上し,クラス間特徴分散を増大させることができる,新たな対人訓練グラフ(ATG)を提案する。
包括的な実験を通じて、提案したATFSフレームワークがクリーンかつロバストなパフォーマンスを著しく改善することを示した。
論文 参考訳(メタデータ) (2022-05-02T04:04:23Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
本稿では,新たなニューラルネットワークトレーニングフレームワークを提案する。
本稿では,データ拡張と対向的摂動の両面に一貫性のある特徴表現を学習することで,敵攻撃に対するモデルロバスト性を改善することを提案する。
我々は,CIFAR-10データセットを用いて,教師付きおよび自己教師付き対向学習法よりも頑健な精度とクリーンな精度を両立させる手法を検証する。
論文 参考訳(メタデータ) (2022-03-16T21:41:27Z) - Improving adversarial robustness of deep neural networks by using
semantic information [17.887586209038968]
対人訓練は、敵の堅牢性を改善するための主要な方法であり、対人攻撃に対する第一線である。
本稿では,ネットワーク全体から,あるクラスに対応する決定境界に近い領域の重要部分に焦点を移す,対向ロバスト性の問題に対する新たな視点を提供する。
MNISTとCIFAR-10データセットの実験的結果は、この手法がトレーニングデータから非常に小さなデータセットを使用しても、敵の堅牢性を大幅に向上することを示している。
論文 参考訳(メタデータ) (2020-08-18T10:23:57Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Class-Aware Domain Adaptation for Improving Adversarial Robustness [27.24720754239852]
学習データに敵の例を注入することにより,ネットワークを訓練するための敵の訓練が提案されている。
そこで本研究では,対人防御のための新しいクラスアウェアドメイン適応法を提案する。
論文 参考訳(メタデータ) (2020-05-10T03:45:19Z) - Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic
Segmentation [79.42338812621874]
敵のトレーニングは、敵の摂動に対するディープニューラルネットワークの堅牢性を改善することを約束している。
本研究は, 敵とクリーンの両方のサンプルに対して良好に動作可能な, 汎用的な敵の訓練手順を定式化する。
本稿では,防衛効果を高めるための動的分割対対人訓練(DDC-AT)戦略を提案する。
論文 参考訳(メタデータ) (2020-03-14T05:06:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。