GSR-Net: Graph Super-Resolution Network for Predicting High-Resolution
from Low-Resolution Functional Brain Connectomes
- URL: http://arxiv.org/abs/2009.11080v1
- Date: Wed, 23 Sep 2020 12:02:55 GMT
- Title: GSR-Net: Graph Super-Resolution Network for Predicting High-Resolution
from Low-Resolution Functional Brain Connectomes
- Authors: Megi Isallari and Islem Rekik
- Abstract summary: We introduce GSR-Net, the first super-resolution framework operating on graph-structured data that generates high-resolution brain graphs from low-resolution graphs.
First, we adopt a U-Net like architecture based on graph convolution, pooling and unpooling operations specific to non-Euclidean data.
Second, inspired by spectral theory, we break the symmetry of the U-Net architecture by topping it up with a graph super-resolution layer and two graph convolutional network layers to predict a HR graph.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Catchy but rigorous deep learning architectures were tailored for image
super-resolution (SR), however, these fail to generalize to non-Euclidean data
such as brain connectomes. Specifically, building generative models for
super-resolving a low-resolution (LR) brain connectome at a higher resolution
(HR) (i.e., adding new graph nodes/edges) remains unexplored although this
would circumvent the need for costly data collection and manual labelling of
anatomical brain regions (i.e. parcellation). To fill this gap, we introduce
GSR-Net (Graph Super-Resolution Network), the first super-resolution framework
operating on graph-structured data that generates high-resolution brain graphs
from low-resolution graphs. First, we adopt a U-Net like architecture based on
graph convolution, pooling and unpooling operations specific to non-Euclidean
data. However, unlike conventional U-Nets where graph nodes represent samples
and node features are mapped to a low-dimensional space (encoding and decoding
node attributes or sample features), our GSR-Net operates directly on a single
connectome: a fully connected graph where conventionally, a node denotes a
brain region, nodes have no features, and edge weights denote brain
connectivity strength between two regions of interest (ROIs). In the absence of
original node features, we initially assign identity feature vectors to each
brain ROI (node) and then leverage the learned local receptive fields to learn
node feature representations. Second, inspired by spectral theory, we break the
symmetry of the U-Net architecture by topping it up with a graph
super-resolution (GSR) layer and two graph convolutional network layers to
predict a HR graph while preserving the characteristics of the LR input. Our
proposed GSR-Net framework outperformed its variants for predicting
high-resolution brain functional connectomes from low-resolution connectomes.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Strongly Topology-preserving GNNs for Brain Graph Super-resolution [5.563171090433323]
Brain graph super-resolution (SR) is an under-explored yet highly relevant task in network neuroscience.
Current SR methods leverage graph neural networks (GNNs) thanks to their ability to handle graph-structured datasets.
We develop an efficient mapping from the edge space of our low-resolution (LR) brain graphs to the node space of a high-resolution (HR) dual graph.
arXiv Detail & Related papers (2024-11-01T03:29:04Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Inter-Domain Alignment for Predicting High-Resolution Brain Networks
Using Teacher-Student Learning [0.0]
We propose Learn to SuperResolve Brain Graphs with Knowledge Distillation Network (L2S-KDnet) to superresolve brain graphs.
Our teacher network is a graph encoder-decoder that firstly learns the LR brain graph embeddings, and secondly learns how to align the resulting latent representations to the HR ground truth data distribution.
Next, our student network learns the knowledge of the aligned brain graphs as well as the topological structure of the predicted HR graphs transferred from the teacher.
arXiv Detail & Related papers (2021-10-06T09:31:44Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural
Networks [74.26734952400925]
We propose a novel Minimum Graph Entropy (MinGE) algorithm for Node Embedding Dimension Selection (NEDS)
MinGE considers both feature entropy and structure entropy on graphs, which are carefully designed according to the characteristics of the rich information in them.
Experiments with popular Graph Neural Networks (GNNs) on benchmark datasets demonstrate the effectiveness and generalizability of our proposed MinGE.
arXiv Detail & Related papers (2021-05-07T11:40:29Z) - Brain Graph Super-Resolution Using Adversarial Graph Neural Network with
Application to Functional Brain Connectivity [0.0]
We propose the first-ever deep graph super-resolution (GSR) framework that attempts to automatically generate high-resolution (HR) brain graphs.
Our proposed AGSR-Net framework outperformed its variants for predicting high-resolution functional brain graphs from low-resolution ones.
arXiv Detail & Related papers (2021-05-02T09:09:56Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
We propose a novel geometric aggregation scheme for graph neural networks to overcome the two weaknesses.
The proposed aggregation scheme is permutation-invariant and consists of three modules, node embedding, structural neighborhood, and bi-level aggregation.
We also present an implementation of the scheme in graph convolutional networks, termed Geom-GCN, to perform transductive learning on graphs.
arXiv Detail & Related papers (2020-02-13T00:03:09Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.