論文の概要: An electronic neuromorphic system for real-time detection of High
Frequency Oscillations (HFOs) in intracranial EEG
- arxiv url: http://arxiv.org/abs/2009.11245v2
- Date: Thu, 22 Oct 2020 14:22:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 15:16:46.198105
- Title: An electronic neuromorphic system for real-time detection of High
Frequency Oscillations (HFOs) in intracranial EEG
- Title(参考訳): 頭蓋内脳波における高周波振動(HFO)のリアルタイム検出のための電子ニューロモルフィックシステム
- Authors: Mohammadali Sharifshazileh (1 and 2), Karla Burelo (1 and 2), Johannes
Sarnthein (2) and Giacomo Indiveri (1) ((1) Institute of Neuroinformatics,
University of Zurich and ETH Zurich, (2) Klinik f\"ur Neurochirurgie,
Universit\"atsSpital und Universit\"at Z\"urich)
- Abstract要約: 本稿では,脳波記録ヘッドステージと信号-スパイク変換回路とマルチコアスパイクニューラルネットワークアーキテクチャを組み合わせたニューロモルフィックシステムを提案する。
本研究では,HFOを確実に検出する方法について述べる。このシステムは,最先端の精度,特異性,感度(それぞれ78%,100%,33%)で術後発作を予測できる。
これは、イベントベースのプロセッサを使用して、リアルタイム、オンチップで頭蓋内人間のデータに関連する特徴を特定するための最初の可能性研究である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a neuromorphic system that combines for the first
time a neural recording headstage with a signal-to-spike conversion circuit and
a multi-core spiking neural network (SNN) architecture on the same die for
recording, processing, and detecting High Frequency Oscillations (HFO), which
are biomarkers for the epileptogenic zone. The device was fabricated using a
standard 0.18$\mu$m CMOS technology node and has a total area of 99mm$^{2}$. We
demonstrate its application to HFO detection in the iEEG recorded from 9
patients with temporal lobe epilepsy who subsequently underwent epilepsy
surgery. The total average power consumption of the chip during the detection
task was 614.3$\mu$W. We show how the neuromorphic system can reliably detect
HFOs: the system predicts postsurgical seizure outcome with state-of-the-art
accuracy, specificity and sensitivity (78%, 100%, and 33% respectively). This
is the first feasibility study towards identifying relevant features in
intracranial human data in real-time, on-chip, using event-based processors and
spiking neural networks. By providing "neuromorphic intelligence" to neural
recording circuits the approach proposed will pave the way for the development
of systems that can detect HFO areas directly in the operation room and improve
the seizure outcome of epilepsy surgery.
- Abstract(参考訳): 本研究では,脳波記録ヘッドステージに信号-スパイク変換回路とマルチコアスパイクニューラルネットワーク(SNN)アーキテクチャを併用して,てんかん発生領域のバイオマーカーである高周波数振動(HFO)を記録,処理,検出するニューロモルフィックシステムを提案する。
この装置は標準の 0.18$\mu$m cmos 技術ノードを使用して製造され、総面積は 99mm$^{2} である。
てんかん手術を行った側頭葉てんかん9例から得られたieegのhfo検出への応用を実証した。
検出タスク中のチップの平均消費電力は614.3$\mu$wであった。
本稿では,HFOを確実に検出する方法について述べる。このシステムは,最先端の精度,特異性,感度(それぞれ78%,100%,33%)で術後発作を予測できる。
これは、イベントベースのプロセッサとスパイクニューラルネットワークを使用して、リアルタイムのオンチップで、頭蓋内データの関連特徴を特定するための最初の実現可能性研究である。
神経記録回路に「ニューロモーフィック・インテリジェンス」を提供することにより、提案されたアプローチは、手術室で直接hfo領域を検出し、てんかん手術の発作結果を改善するシステムの開発への道を開くだろう。
関連論文リスト
- Real-time Sub-milliwatt Epilepsy Detection Implemented on a Spiking Neural Network Edge Inference Processor [5.021433741823472]
本研究では、スパイキングニューラルネットワーク(SNN)を用いてててんかん発作の経時的および経時的周期を検出することを目的とする。
提案手法は,体間期間の分類において,93.3%,92.9%の高い試験精度を有する。
我々の研究は、発作検出のための新しいソリューションを提供しており、将来的にはポータブルデバイスやウェアラブルデバイスで広く使用されることが期待されている。
論文 参考訳(メタデータ) (2024-10-22T01:55:02Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Artificial Neural Networks-based Real-time Classification of ENG Signals for Implanted Nerve Interfaces [7.335832236913667]
そこで我々は,ラットの坐骨神経で測定された脳波(ENG)信号から感覚刺激を抽出するために,4種類の人工ニューラルネットワーク(ANN)を探索した。
データセットの異なるサイズは、リアルタイム分類のための調査されたANNの実現可能性を分析するために考慮される。
以上の結果から,ANNはリアルタイムアプリケーションに適しており,100ドル,200ドル以上の信号ウィンドウに対して90%以上のアキュラシーを達成でき,その処理時間も低く,病的回復に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-29T15:23:30Z) - Neuro-BERT: Rethinking Masked Autoencoding for Self-supervised Neurological Pretraining [24.641328814546842]
本稿では、フーリエ領域におけるマスク付き自己エンコーディングに基づく神経信号の自己教師付き事前学習フレームワークであるNeuro-BERTを提案する。
本稿では、入力信号の一部をランダムにマスキングし、欠落した情報を予測するFourier Inversion Prediction (FIP)と呼ばれる新しい事前学習タスクを提案する。
提案手法をいくつかのベンチマークデータセットで評価することにより,Neuro-BERTは下流神経関連タスクを大きなマージンで改善することを示す。
論文 参考訳(メタデータ) (2022-04-20T16:48:18Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
本稿では,高速機能型磁気共鳴イメージング(fMRI)データ拡張技術である条件独立成分分析(Conditional ICA)を紹介する。
本研究では,コンディショナルICAが観測不可能なデータの合成に成功しており,脳の復号化問題における分類精度の向上が期待できることを示す。
論文 参考訳(メタデータ) (2021-07-11T22:36:14Z) - A Spiking Neural Network (SNN) for detecting High Frequency Oscillations
(HFOs) in the intraoperative ECoG [1.8464222520424338]
てんかん原性組織によって生じる高周波発振(HFOs)は、切除マージンを調整するために用いられる。
本稿では,ニューロモルフィックハードウェア実装に適した自動HFO検出のためのスパイクニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2020-11-17T17:24:46Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
スパイキングニューラルネットワーク(SNN)を用いた生時間パルスで直接物体認識問題に対処する手法を提案する。
各種データセットを用いて評価した結果,提案手法は最先端の手法に匹敵する性能を示しながら,優れた時間効率を実現している。
論文 参考訳(メタデータ) (2020-01-24T22:58:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。