論文の概要: Compressive spectral image classification using 3D coded convolutional
neural network
- arxiv url: http://arxiv.org/abs/2009.11948v3
- Date: Mon, 12 Jul 2021 09:25:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 16:47:55.487351
- Title: Compressive spectral image classification using 3D coded convolutional
neural network
- Title(参考訳): 3次元符号化畳み込みニューラルネットワークを用いた圧縮スペクトル画像分類
- Authors: Hao Zhang, Xu Ma, Xianhong Zhao, Gonzalo R. Arce
- Abstract要約: 本稿では、符号化開口スナップショット分光画像(CASSI)の測定に基づく新しい深層学習HIC手法を提案する。
3次元符号化畳み込みニューラルネットワーク(3D-CCNN)と呼ばれる新しいタイプのディープラーニング戦略を提案し,その分類問題を効率的に解く。
ディープラーニングネットワークと符号化開口部の相乗効果を利用して、分類精度を効果的に向上する。
- 参考スコア(独自算出の注目度): 12.67293744927537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image classification (HIC) is an active research topic in
remote sensing. Hyperspectral images typically generate large data cubes posing
big challenges in data acquisition, storage, transmission and processing. To
overcome these limitations, this paper develops a novel deep learning HIC
approach based on compressive measurements of coded-aperture snapshot spectral
imagers (CASSI), without reconstructing the complete hyperspectral data cube. A
new kind of deep learning strategy, namely 3D coded convolutional neural
network (3D-CCNN) is proposed to efficiently solve for the classification
problem, where the hardware-based coded aperture is regarded as a pixel-wise
connected network layer. An end-to-end training method is developed to jointly
optimize the network parameters and the coded apertures with periodic
structures. The accuracy of classification is effectively improved by
exploiting the synergy between the deep learning network and coded apertures.
The superiority of the proposed method is assessed over the state-of-the-art
HIC methods on several hyperspectral datasets.
- Abstract(参考訳): ハイパースペクトル画像分類(HIC)はリモートセンシングにおいて活発な研究課題である。
ハイパースペクトル画像は通常、データ取得、ストレージ、送信、処理において大きな課題となる大きなデータキューブを生成する。
これらの制約を克服するために,全超スペクトルデータ立方体を再構成することなく,符号化開口分光画像(CASSI)の圧縮計測に基づく新しいディープラーニングHIC手法を開発した。
3次元符号化畳み込みニューラルネットワーク(3D-CCNN)と呼ばれる新しいディープラーニング戦略が提案され、ハードウェアベースの符号化開口を画素ワイドネットワーク層と見なす分類問題を効率的に解決する。
ネットワークパラメータと符号化開口部を周期構造で協調的に最適化するエンドツーエンドトレーニング手法を開発した。
深層学習ネットワークと符号化開口部との相乗効果を利用して、分類の精度を効果的に向上させる。
提案手法の優位性は,いくつかの超スペクトルデータセット上での最先端HIC法より評価される。
関連論文リスト
- Spatial-Spectral Hyperspectral Classification based on Learnable 3D
Group Convolution [18.644268589334217]
本稿では、3D-DenseNetモデルの改良と軽量モデル設計に基づく学習可能なグループ畳み込みネットワーク(LGCNet)を提案する。
LGCNetモジュールは、入力チャネルと畳み込みカーネルグループのための動的学習手法を導入することにより、グループ畳み込みの欠点を改善する。
LGCNetは推論速度と精度の進歩を達成し、インドパインズ、パヴィア大学、KSCのデータセットで主流のハイパースペクトル画像分類法より優れている。
論文 参考訳(メタデータ) (2023-07-15T05:47:12Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
設計したハイパーカーネルを利用して,構造パラメータを直接生成することを提案する。
我々は1次元または3次元の畳み込みを伴う画素レベルの分類と画像レベルの分類を別々に行う3種類のネットワークを得る。
6つの公開データセットに関する一連の実験は、提案手法が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-23T17:27:40Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Multiscale Convolutional Transformer with Center Mask Pretraining for
Hyperspectral Image Classificationtion [14.33259265286265]
本稿では,空間スペクトル情報の効率的な抽出を実現するために,高スペクトル画像(HSI)のための高速多スケール畳み込みモジュールを提案する。
マスクオートエンコーダと同様に、我々の事前学習法は、エンコーダ内の中央画素の対応するトークンのみをマスクし、残りのトークンをデコーダに入力し、中央画素のスペクトル情報を再構成する。
論文 参考訳(メタデータ) (2022-03-09T14:42:26Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
本稿では,CNN の代わりに Transformer を用いて HSI の事前学習を行う新しい HSISR 手法を提案する。
具体的には、まず勾配アルゴリズムを用いてHSISRモデルを解き、次に展開ネットワークを用いて反復解過程をシミュレートする。
論文 参考訳(メタデータ) (2021-11-27T15:38:57Z) - End to end hyperspectral imaging system with coded compression imaging
process [13.00211539170695]
符号化開口スペクトルイメージングシステムに基づく物理インフォームド自己監督CNN法を提案する。
本手法は、符号化されたスペクトル情報から空間スペクトルの相対化を効果的に利用し、カメラ量子効果モデルに基づく自己監視システムを構築する。
論文 参考訳(メタデータ) (2021-09-06T13:39:54Z) - Self-supervised Neural Networks for Spectral Snapshot Compressive
Imaging [15.616674529295366]
我々は、訓練されていないニューラルネットワークを用いて、スナップショット圧縮画像(SCI)の再構成問題を解決することを検討する。
本稿では,DIP(Deep Image Priors)やディープデコーダ(Deep Decoder)といった未学習のニューラルネットワークにヒントを得て,DIPをプラグアンドプレイシステムに統合して,スペクトルSCI再構成のための自己教師型ネットワークを構築する。
論文 参考訳(メタデータ) (2021-08-28T14:17:38Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
デジタル病理画像セグメンテーションタスクにおいて、ディープニューラルネットワークと高い競争力を持つ、容易に訓練されながら強力な表現学習手法を提案する。
ScD2TEと略すこの手法はスパースコーディング駆動の深層決定木アンサンブルと呼ばれ、表現学習の新しい視点を提供する。
論文 参考訳(メタデータ) (2020-08-13T02:59:31Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。