Many-body collisional dynamics of impurities injected into a double-well
trapped Bose-Einstein condensate
- URL: http://arxiv.org/abs/2009.12147v2
- Date: Mon, 26 Apr 2021 16:49:31 GMT
- Title: Many-body collisional dynamics of impurities injected into a double-well
trapped Bose-Einstein condensate
- Authors: Friethjof Theel, Kevin Keiler, Simeon I. Mistakidis, Peter Schmelcher
- Abstract summary: We reveal that the emerging correlation dynamics crucially depends on the impurity-medium interaction strength.
We extend our results to the case of two bosonic impurities and demonstrate the existence of a qualitatively similar impurity dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We unravel the many-body dynamics of a harmonically trapped impurity
colliding with a bosonic medium confined in a double-well upon quenching the
initially displaced harmonic trap to the center of the double-well. We reveal
that the emerging correlation dynamics crucially depends on the impurity-medium
interaction strength allowing for a classification into different dynamical
response regimes. For strong attractive impurity-medium couplings the impurity
is bound to the bosonic bath, while for intermediate attractions it undergoes
an effective tunneling. In the case of weak attractive or repulsive couplings
the impurity penetrates the bosonic bath and performs a dissipative oscillatory
motion. Further increasing the impurity-bath repulsion results in the pinning
of the impurity between the density peaks of the bosonic medium, a phenomenon
that is associated with a strong impurity-medium entanglement. For strong
repulsions the impurity is totally reflected by the bosonic medium. To unravel
the underlying microscopic excitation processes accompanying the dynamics we
employ an effective potential picture. We extend our results to the case of two
bosonic impurities and demonstrate the existence of a qualitatively similar
impurity dynamics.
Related papers
- Bound impurities in a one-dimensional Bose lattice gas: low-energy properties and quench-induced dynamics [0.0]
We study two mobile bosonic impurities immersed in a one-dimensional optical lattice and interacting with a bosonic bath.
We consider the branch of repulsive interactions that induce the formation of bound impurities, akin to the bipolaron problem.
arXiv Detail & Related papers (2024-02-05T15:01:14Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Collective flow of fermionic impurities immersed in a Bose-Einstein Condensate [34.82692226532414]
We study the collective oscillations of spin-polarized fermionic impurities immersed in a Bose-Einstein condensate.
For strong interactions, the Fermi gas perfectly mimics the superfluid hydrodynamic modes of the condensate.
With an increasing number of bosonic thermal excitations, the dynamics of the impurities cross over from the collisionless to the hydrodynamic regime.
arXiv Detail & Related papers (2023-04-16T00:58:05Z) - Manipulating solid-state spin concentration through charge transport [17.571298724628114]
Solid-state spin defects are attractive candidates for developing quantum sensors and simulators.
We develop a wide-field imaging setup integrated with a fast single photon detector array.
We demonstrate the concentration of the dominant spin defects by a factor of 2 while keeping the $T$ increase of the NV center.
arXiv Detail & Related papers (2023-02-24T16:53:28Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Dynamical formation of two-fold fragmented many-body state induced by an
impurity in a double-well [4.2575268077562685]
We unravel the correlated quantum quench dynamics of a single impurity immersed in a bosonic environment.
For a non-interacting bosonic bath and weak postquench impurity-bath interactions, we observe the formation of a two-fold fragmented many-body state.
arXiv Detail & Related papers (2022-11-10T20:02:54Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Radiofrequency spectroscopy of one-dimensional trapped Bose polarons:
crossover from the adiabatic to the diabatic regime [0.0]
We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency pulses.
We find that for strongly repulsive impurity-bath interactions, a temporal orthogonality catastrophe manifests in resonances in the excitation spectra.
The findings in this work should have implications for the new generations of cold-atom experiments.
arXiv Detail & Related papers (2020-11-27T14:44:07Z) - Pattern formation of correlated impurities subjected to an
impurity-medium interaction pulse [0.0]
We study the correlated dynamics of few interacting bosonic impurities immersed in a harmonically trapped bosonic environment.
For strong modulations, and driving from the miscible to the immiscible regime, a significant fraction of the impurities is expelled to the edges of the bath.
arXiv Detail & Related papers (2020-09-18T15:48:09Z) - Induced interactions and quench dynamics of bosonic impurities immersed
in a Fermi sea [0.0]
We unravel the non-equilibrium quantum dynamics of two bosonic impurities immersed in a fermionic environment.
In the ground state, the impurities and the Fermi sea are phase-separated for strong impurity-medium repulsions.
We demonstrate the presence of attractive induced interactions mediated by the host for impurity-medium couplings of either sign.
arXiv Detail & Related papers (2020-07-04T18:50:57Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.