論文の概要: Improved Dimensionality Reduction of various Datasets using Novel
Multiplicative Factoring Principal Component Analysis (MPCA)
- arxiv url: http://arxiv.org/abs/2009.12179v1
- Date: Fri, 25 Sep 2020 12:30:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-14 23:07:45.740204
- Title: Improved Dimensionality Reduction of various Datasets using Novel
Multiplicative Factoring Principal Component Analysis (MPCA)
- Title(参考訳): 新規乗算因子主成分分析(MPCA)による各種データセットの次元化の改善
- Authors: Chisom Ezinne Ogbuanya
- Abstract要約: 本稿では,従来のPCA手法である乗算因子分解主成分分析の改良について述べる。
従来のPCAに対するMPCAの利点は、乗算器を通して発生空間にペナルティを課すことで、射影の探索において、アウトレーヤの効果を無視できることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Principal Component Analysis (PCA) is known to be the most widely applied
dimensionality reduction approach. A lot of improvements have been done on the
traditional PCA, in order to obtain optimal results in the dimensionality
reduction of various datasets. In this paper, we present an improvement to the
traditional PCA approach called Multiplicative factoring Principal Component
Analysis (MPCA). The advantage of MPCA over the traditional PCA is that a
penalty is imposed on the occurrence space through a multiplier to make
negligible the effect of outliers in seeking out projections. Here we apply two
multiplier approaches, total distance and cosine similarity metrics. These two
approaches can learn the relationship that exists between each of the data
points and the principal projections in the feature space. As a result of this,
improved low-rank projections are gotten through multiplying the data
iteratively to make negligible the effect of corrupt data in the training set.
Experiments were carried out on YaleB, MNIST, AR, and Isolet datasets and the
results were compared to results gotten from some popular dimensionality
reduction methods such as traditional PCA, RPCA-OM, and also some recently
published methods such as IFPCA-1 and IFPCA-2.
- Abstract(参考訳): 主成分分析(PCA)は最も広く応用された次元減少法として知られている。
従来のPCAでは,様々なデータセットの次元的削減に最適な結果を得るために,多くの改良がなされている。
本稿では,従来のPCA手法であるMPCA(Multi Plicative Factoring principal Component Analysis)の改良について述べる。
従来のPCAに対するMPCAの利点は、乗算器を通して発生空間にペナルティを課すことで、射影を求めるときのアウトリーフの影響を無視できることである。
ここでは、総距離とコサイン類似度メトリクスという2つの乗算法を適用する。
これら2つのアプローチは、各データポイントと特徴空間の主射影の間に存在する関係を学習することができる。
これにより、トレーニングセット内の破損データの影響を無視できるように、データを反復的に乗算することで、低ランクのプロジェクションが改善される。
YaleB, MNIST, AR, Isolet のデータセットを用いて実験を行い, 従来のPCA, RPCA-OM, IFPCA-1, IFPCA-2 などの一般的な次元削減手法による結果と比較した。
関連論文リスト
- ALPCAH: Sample-wise Heteroscedastic PCA with Tail Singular Value
Regularization [17.771454131646312]
主成分分析はデータ次元削減の分野で重要なツールである。
そこで本研究では,サンプル単位の雑音分散を推定できるPCA法を開発した。
これは低ランク成分の分布的な仮定なしで、ノイズの分散が知られていると仮定せずに行われる。
論文 参考訳(メタデータ) (2023-07-06T03:11:11Z) - Improved Privacy-Preserving PCA Using Optimized Homomorphic Matrix
Multiplication [0.0]
主成分分析(英: principal Component Analysis、PCA)は、機械学習とデータ分析の領域で広く利用されている重要な技術である。
近年,セキュアなクラウドコンピューティングシナリオにおいて,プライバシ保護型PCAアルゴリズムの同型暗号化を活用する取り組みが進められている。
本稿では,これらの制約に対処するプライバシー保護PCAに対して,従来の手法に比べて効率,精度,拡張性に優れる新たなアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-27T02:51:20Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - AgFlow: Fast Model Selection of Penalized PCA via Implicit
Regularization Effects of Gradient Flow [64.81110234990888]
主成分分析(PCA)は特徴抽出と次元減少の有効な手法として広く用いられている。
High Dimension Low Sample Size (HDLSS) 設定では、ペナル化ロードを備えた修正主成分が好まれる。
ペナル化PCAの高速モデル選択法として近似勾配流(AgFlow)を提案する。
論文 参考訳(メタデータ) (2021-10-07T08:57:46Z) - Supervised Linear Dimension-Reduction Methods: Review, Extensions, and
Comparisons [6.71092092685492]
主成分分析(PCA)は、データ解析やモデリングに広く用いられている、よく知られた線形次元還元法である。
本稿では,選択した手法をレビューし,その一部を拡張し,シミュレーションによる性能比較を行う。
これらの2つの手法のうち、部分最小二乗法(PLS)と最小二乗法(LSPCA)は、この研究で他よりも一貫して優れている。
論文 参考訳(メタデータ) (2021-09-09T17:57:25Z) - FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component
Analysis [12.91948651812873]
主成分分析(PCA)は、機械学習の世界における基本的なデータ前処理ツールである。
本稿では,FAST-PCA (Fast and exact distributed PCA) と呼ばれる分散PCAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-27T16:10:59Z) - Enhanced Principal Component Analysis under A Collaborative-Robust
Framework [89.28334359066258]
重み学習とロバストな損失を非自明な方法で組み合わせる,一般的な協調ロバスト重み学習フレームワークを提案する。
提案されたフレームワークでは、トレーニング中の重要度を示す適切なサンプルの一部のみがアクティブになり、エラーが大きい他のサンプルは無視されません。
特に、不活性化試料の負の効果はロバスト損失関数によって軽減される。
論文 参考訳(メタデータ) (2021-03-22T15:17:37Z) - Spike and slab Bayesian sparse principal component analysis [0.6599344783327054]
本稿では,パラメータ拡張座標の漸近変動推論(PX-CAVI)アルゴリズムを提案する。
PX-CAVIアルゴリズムは2つのSPCA手法より優れていることを示す。
このアルゴリズムは肺がん遺伝子発現データセットの研究に応用される。
論文 参考訳(メタデータ) (2021-01-30T20:28:30Z) - Supervised PCA: A Multiobjective Approach [70.99924195791532]
制御主成分分析法(SPCA)
本研究では,これらの目的を両立させる新しいSPCA手法を提案する。
この手法は、任意の教師付き学習損失に対応し、統計的再構成により、一般化された線形モデルの新しい低ランク拡張を提供する。
論文 参考訳(メタデータ) (2020-11-10T18:46:58Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
指数関数型家族主成分分析(EPCA)の混合拡張は、従来のEPCAよりもデータ分布に関する構造情報を符号化するように設計された。
従来のEPCAの混合は、モデルの冗長性、すなわち混合成分間の重なりが問題であり、データクラスタリングの曖昧さを引き起こす可能性がある。
本稿では, 混合成分間での反発性増感前処理を導入し, ベイズ式に分散EPCA混合(DEPCAM)モデルを開発した。
論文 参考訳(メタデータ) (2020-04-07T04:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。