Sequence-to-Sequence Load Disaggregation Using Multi-Scale Residual
Neural Network
- URL: http://arxiv.org/abs/2009.12355v1
- Date: Fri, 25 Sep 2020 17:41:28 GMT
- Title: Sequence-to-Sequence Load Disaggregation Using Multi-Scale Residual
Neural Network
- Authors: Gan Zhou, Zhi Li, Meng Fu, Yanjun Feng, Xingyao Wang and Chengwei
Huang
- Abstract summary: Non-Intrusive Load Monitoring (NILM) has received more and more attention as a cost-effective way to monitor electricity.
Deep neural networks has been shown a great potential in the field of load disaggregation.
- Score: 4.094944573107066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increased demand on economy and efficiency of measurement
technology, Non-Intrusive Load Monitoring (NILM) has received more and more
attention as a cost-effective way to monitor electricity and provide feedback
to users. Deep neural networks has been shown a great potential in the field of
load disaggregation. In this paper, firstly, a new convolutional model based on
residual blocks is proposed to avoid the degradation problem which traditional
networks more or less suffer from when network layers are increased in order to
learn more complex features. Secondly, we propose dilated convolution to
curtail the excessive quantity of model parameters and obtain bigger receptive
field, and multi-scale structure to learn mixed data features in a more
targeted way. Thirdly, we give details about generating training and test set
under certain rules. Finally, the algorithm is tested on real-house public
dataset, UK-DALE, with three existing neural networks. The results are compared
and analysed, the proposed model shows improvements on F1 score, MAE as well as
model complexity across different appliances.
Related papers
- CCDepth: A Lightweight Self-supervised Depth Estimation Network with Enhanced Interpretability [11.076431337488973]
This study proposes a novel hybrid self-supervised depth estimation network, CCDepth, comprising convolutional neural networks (CNNs) and the white-box CRATE network.
This novel network uses CNNs and the CRATE modules to extract local and global information in images, respectively, thereby boosting learning efficiency and reducing model size.
arXiv Detail & Related papers (2024-09-30T04:19:40Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Residual Multi-Fidelity Neural Network Computing [0.0]
We present a residual multi-fidelity computational framework that formulates the correlation between models as a residual function.
We show that dramatic savings in computational cost may be achieved when the output predictions are desired to be accurate within small tolerances.
arXiv Detail & Related papers (2023-10-05T14:43:16Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Go Beyond Multiple Instance Neural Networks: Deep-learning Models based
on Local Pattern Aggregation [0.0]
convolutional neural networks (CNNs) have brought breakthroughs in processing clinical electrocardiograms (ECGs) and speaker-independent speech.
In this paper, we propose local pattern aggregation-based deep-learning models to effectively deal with both problems.
The novel network structure, called LPANet, has cropping and aggregation operations embedded into it.
arXiv Detail & Related papers (2022-05-28T13:18:18Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
We propose a new approach for the regularization of neural networks by the local Rademacher complexity called LocalDrop.
A new regularization function for both fully-connected networks (FCNs) and convolutional neural networks (CNNs) has been developed based on the proposed upper bound of the local Rademacher complexity.
arXiv Detail & Related papers (2021-03-01T03:10:11Z) - The Self-Simplifying Machine: Exploiting the Structure of Piecewise
Linear Neural Networks to Create Interpretable Models [0.0]
We introduce novel methodology toward simplification and increased interpretability of Piecewise Linear Neural Networks for classification tasks.
Our methods include the use of a trained, deep network to produce a well-performing, single-hidden-layer network without further training.
On these methods, we conduct preliminary studies of model performance, as well as a case study on Wells Fargo's Home Lending dataset.
arXiv Detail & Related papers (2020-12-02T16:02:14Z) - EagerNet: Early Predictions of Neural Networks for Computationally
Efficient Intrusion Detection [2.223733768286313]
We propose a new architecture to detect network attacks with minimal resources.
The architecture is able to deal with either binary or multiclass classification problems and trades prediction speed for the accuracy of the network.
arXiv Detail & Related papers (2020-07-27T11:31:37Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.